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The description of 3-space as a spacelike 3-surface X of the space H = M 4 • CP 2 
(Product of Minkowski space and two-dimensional complex projective space 
CP2) and the idea that particles correspond to 3-surfaces of finite size in H are 
the basic ingredients of topological geometrodynamics (TGD), an attempt at a 
geometry-based unification of the fundamental interactions. The observations 
that the Schr6dinger equation can be derived from a variational principle and 
that the existence of a unitary S-matrix follows from the phase symmetry of this 
action lead to the idea that quantum TGD should be derivable from a quadratic 
phase-symmetric variational principle for some kind of superffeld (describing 
both fermions and bosons) in the configuration space consisting of the spacelike 
3-surfaces of H. This idea as such has not led to a calculable theory. The reason 
is the wrong realization of the general coordinate invariance. The crucial observa- 
tion is that the space Map(X, H), the space of maps from an abstract 3-manifold 
X to H, inherits a coset space structure from H and can be given a Kahler 
geometry invariant under the local M4x SU(3) and under the group Diff of X 
diffeomorphisms. The space Map(X, H) is taken as a basic geometric object 
and general coordinate invariance is realized by requiring that superfields defined 
in Map(X, H) are diffeo-invariant, so that they can be regarded as fields in 
Map(X, H)/Diff, the space of surfaces with given manifold topology. Super- 
d'Alembert equations are found to reduce to a simple algebraic condition due 
to the constant curvature and KShler properties of Map(X, H). The construction 
of physical states leads by local M4x SU(3) invariance to a formalism closely 
resembling the quantization of strings. The pointlike limit of the theory is 
discussed. Finally, a formal expression for the S-matrix of the theory is derived 
and general properties of the S-matrix are discussed. 

1. I N T R O D U C T I O N  

T o p o l o g i c a l  g e o m e t r o d y n a m i c s  ( T G D )  is a g e o m e t r y - b a s e d  a t t e m p t  to  

u n i f y  t h e  f u n d a m e n t a l  i n t e r a c t i o n s  b a s e d  o n  t h e  i d e a  t h a t  c l a s s i ca l  s p a c e -  

t i m e  c a n  b e  r e g a r d e d  as  a s u b m a n i f o l d  o f  s o m e  h i g h e r  d i m e n s i o n a l  s p a c e  

H (P i tk~inen ,  1981, 1983,  1985, 1986).  O n c e  t h e  p o s t u l a t e  a b o u t  r e p r e s e n t a -  

b i l i ty  as a s u b m a n i f o l d  is a c c e p t e d ,  o n e  is l ed  r a t h e r  n a t u r a l l y  to  t h e  f o l l o w i n g  

s c e n a r i o .  
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1. The concepts of particle and 3-space generalize and, in a certain 
sense, are unified. Particles (in a very general sense of the word) are identified 
as spacelike 3-surfaces of H, so that a topological classification of particles 
and particle reactions emerges. Classical 3-space with particles is identified 
as a topologically trivial 3-surface to which the particlelike 3-surfaces are 
"glued 2' 

2. The natural requirement that isometries of the space H are sym- 
metries of the theory leads to the identification of the space H as the 
Cartesian Product M 4 X CP2 of Minkowski space and of the space CP2, the 
complex projective space (Eguchi et al., 1980; Gibbons and Pope, 1978). 
The isometry group of the space CP2 is identified as the color group. Thus, 
one can identify color gravitational interactions as interactions coupling to 
the isometry charges of the space H. 

3. The so-called induction procedure allows one to define gauge poten- 
tials on the submanifolds of H as field quantities induced from the spinor 
connection of the space H. It turns out that these gauge potentials can be 
identified as electroweak gauge potentials. 

4. The geometrization of spectroscopy is achieved. The choice explains 
the quantum numbers associated with a single particle family and the family 
replication phenomenon has a natural topological explanation. One can 
imagine several dynamical scenarios in which either leptons or quarks or 
both appear as elementary fermions. 

Concerning the form of the quantum dynamics based on this general 
framework, perhaps the most important achievement hitherto is the realiz- 
ation that the formulation of the theory, whatever it may be, should be free 
of arbitrary physically relevant parameters. This means that all dimensional 
parameters (gravitational coupling, masses, etc.) should be related to the 
length scale of CP2 by some predictable dimensionless numbers (scale 
invariance is broken by the curvature of CP2). Also, dimensionless couplings 
should be predictions of the theory. 

The use of the conventional quantization methods to construct a quan- 
tum theory which "predicts everything" is highly questionable, since these 
methods typically describe interactions as nonlinearities in the act ion 
defining the theory, so that various coupling constants are arbitrary para- 
meters at least at the classical level. 

Thus, the quantization philosophy adopted in Pitk~inen (1986) was, in 
concise form, "Do not quantize!" The new line of  thought was based on 
the following observations: 

1. The ordinary schr6dinger equation is obtained from a variational 
principle and the associated action is quadratic with respect to the probabil- 
ity amplitude. 

2. The existence of a Hilbert space scalar product and of a unitary 
S-matrix results from the conservation law of probability, which in turn 
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follows from the phase symmetry of the quadratic action. 
From these observations we abstracted (Pitk~inen, 1986) our basic recipe 

of a quantum theory: 
1. Assume the existence of a configuration space SH endowed with 

metric structure (spacelike submanifolds of H). 
2. Postulate a variational principle for the probability amplitudes 

defined in SH with the property that the associated action is quadratic with 
respect to the probability amplitudes and invariant under phase symmetries. 

The action principle is fixed to high degree by requiring that: 
3. The probability amplitudes are geometric objects and the action is 

defined by a Lagrangian density invariant under the coordinate transforma- 
tions of the space SH. More concretely, the quantum equations of motion 
should correspond to "massless" (no free physically relevant parameters) 
d'Alembert-type equations in configuration space endowed with a metric. 

Furthermore, it is natural to assume that: 
4. The geometry of the configuration space (spacelike 3-submanifolds 

of the space H) is induced from the geometry of H (metric, Riemannian 
connection, and spinor structure). 

Since the state functionals must be capable of describing both bosons 
and fermions and states of arbitrarily high fermion number, it is natural to 
postulate: 

5. A state functional is a Grassmann algebra-valued "scalar superfield" 
(Volkov and Akulov, 1973; Wess and Zumino, 1974; Stelle, 1983; Berezin, 
1966). The generators of the configuration space (3-submanifold of H) are 
in one-to-one correspondence with the configuration space spinors. 

In order to understand how this program might lead to a unitary 
S-matrix, consider the following argument. Configuration space SH is 
obtained by gluing together spaces SH(t, n) corresponding to 3-manifolds 
with a given number of components ("particle number") with given 
topologies t. The points common to SH(tl ,  m) and SH(t2, m) correspond 
to surfaces topologically intermediate between manifold topologies tl and 
t2 and are singular as manifolds. 

Consider now a state functional corresponding to a well-defined particle 
number n and thus restricted to SH(n). The uncertainty principle in SH 
(!) implies that this state cannot be stationary, but begins to disperse to 
other parts of SH with different particle numbers. Clearly, this process 
leads to occurrence of particle reactions. 

We have already made an attempt to formulate a mathematical theory 
based on these general ideas (Pitk~inen, 1986). In this paper we give a 
formulation which differs in one important respect from the previous brute 
force approach: the general coordinate invariance is realized differently. 

In the previous formulation (Pitk~inen, 1986) we derived expressions 
for the line element of the metric and related quantities of the configuration 
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space and obtained rather a complicated-looking formulation. The global 
geometry of the configuration space was not discussed. 

The present formulation is based on the observation that single-particle 
configuration space can be regarded as the space Map(X, H) /Dif f ,  where 
G is the space of maps from X (with given topology) to H = M 4 • CP2 and 
Diff is the group of diffeomorphisms of X. 

The space Map(X, H) /Di f f  as such is not very simple geometrically, 
but Map(X, H)  is. The point is that it can be regarded as a coset space 
G/F, where G is the group Map(X, M4xSU(3)) and F is the group 
Map(X, SU(2) x U(1)). The group operation is given by the group operation 
of M 4 • SU(3) taken pointwise in X. 

This space can be made a constant-curvature space with G-invariant 
geometry and thus the local M 4 •  SU(3) acts as its isometry group. The 
calculation of various geometric quantities is expected to reduce to a mere 
group-theoretic task. 

Thus the following approach suggests itself. Instead of 
Map(X, H)/Diff ,  use the space Map(X, H)  as the basic object and realize 
the general coordinate invariance by posing the following requirements: 
(1) The allowed superfields in G/F are diffeoinvariant and can be regarded 
as superfields in Map(X, H) /Dif f ;  (2) the G-invariant geometry of G/F is 
also diffeoinvariant. 

This approach has some far-reaching implications. The symmetry group 
of the theory is G and its Lie algebra is a Kac-Moody-type algebra. Thus, 
the quantum mechanical states must form irreducible representations of 
this group and we have good hopes of understanding the general features 
of the physical state space by group-theoretic considerations alone. The 
same also applies to the evaluation of the S-matrix elements. 

The plan of the paper is as follows: 
In Section 2 I discuss the problem of defining SH as a manifold and 

consider in detail the geometrization of the space G/F in a G- and 
diffeoinvariant manner. I find that the requirement of diffeoinvariance 
implies K~ihler (and thus symplectic) structure in this space and that the 
metric is quite unique. 

The construction of the K~ihler metric leads in a natural manner to a 
central extension of the Lie-algebra of G and it is found that this extension 
is very similar to that encountered in the string model. The so-called 
quantization can be understood purely geometrically. It corresponds to the 
introduction of a K~ihler potential term into the ordinary covariant derivative 
in G/F. 

The construction of spinor structure is also considered and a representa- 
tion of gamma matrices in the space of H-spinors defined on X is given. 

In Section 3 I construct the superfield formalism and in the case of 
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constant-curvature space derive the general solution of  super-d'Alembert 
equations. 

Section 4 is devoted to the symmetries of the theory. The realization 
of the color symmetry is discussed in detail. It is shown that positive norm 
requirement fixes the form of  the super-d'Alembertian uniquely and implies 
matter-antimatter asymmetry and a generalized chiral invariance (separately 
conserved baryon and lepton numbers) and its spontaneous breaking. N = 1 
supersymmetry at the pointlike limit is also a consequence of this symmetry. 

The general features of the Lie-algebraic state construction in the 
infinite-dimensional case are discussed and it is found that the resulting 
scenario resembles very closely that encountered in the string model, in 
that physical states can be regarded as diffeoinvariant representations of 
the centrally extended Kac-Moody  algebra associated with the local M4x 
SU(3). 

Section 5 is devoted to the discussion of  the pointlike limit of the 
theory. The general rules for the construction of states are formulated and 
it is shown that the experimentally observed particles can be identified from 
the spectrum. 

Section 6 is devoted to the construction of the S-matrix. The so-called 
bare states are defined as state functionals restricted to a subset of the 
configuration space corresponding to fixed manifold topology t. Stationary 
states are defined as continuations of the bare state functionals to state 
functionals in the whole configuration space. A formal solution of the 
continuity conditions is derived and conditions guaranteeing the uniqueness 
of the continuation are deduced. Finally, an explicit expression for S-matrix 
as a unitary matrix transforming bare states to stationary state is derived. 

The pointlike limit of the theory is discussed briefly and it is shown 
how one can understand the coupling strengths and selection rules from 
the form of  the general solution of the super-d'Alembertian. 

2. ABOUT THE STRUCTURE OF THE CONFIGURATION SPACE 

In this section I shall first discuss the general structure of the configur- 
ation space and then perform the diffeoinvariant geometrization of the space 
Map(X, H).  

2.1. The General Structure of the Configuration Space 

In earlier work (Pitkfinen, 1981, 1983, 1985, 1986) I formulated the theory 
in the space SH of surfaces of the space H. The space of surfaces was 
defined in the following manner: 
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1. Allowed 3-surfaces are spacelike and can have arbitrarily many 
disjoint components.  Thus, SH divides into subsets with definite component  
number. The connected surfaces are clearly fundamental  geometric objects. 

2. A surface was defined as a subset of  H, which is locally manifold. 
Thus surface can have self-intersections and pinches, etc. In earlier publica- 
tions (Pitk5nen, 1981, 1983, 1985) I have discussed the description of the 
particles as submanifolds of  H. 

3. The singular submanifolds of  H, which correspond to topology, 
changing transitions of  3-manifolds, play a central role in the description 
of the interactions in TGD. These surfaces are intermediate between two 
manifold topologies. 

A rough classification of the various topology changes and a description 
of various particle reactions in terms of the intermediate topologies was 
suggested in earlier papers (Pitk/inen, 1981, 1983, 1985). It is natural to 
require that all allowed singular surfaces have topologies intermediate 
between two manifold topologies. 

The set SH of surfaces was defined as the union of the sets SH(ti) 
and the sets SH(t~j), where tij is a manifold with topology intermediate 
between the topologies ti and t~: 

SH = 1._] SH( t,) u [ U S H (  to) ] 
i ij 

In this union the manifolds with intermediate topologies were understood 
as limiting cases of  nonsingular manifolds. 

It was argued that the subsets of  SH consisting of submanifolds of SH 
with a fixed topology are of  the same dimension as SH itself and that the 
subsets consisting of singular manifolds in some sense form a "measure-  
zero" subset of  SH. 

The idea that submanifolds with a fixed topology form a subset of  SH 
having the same dimension as SH derives from their property of  being 
open sets of SH. That these sets are open follows from the invariance of 
the property of  being submanifold with a given topology under small 
deformations of the surface. 

The subsets of SH consisting of surfaces that are singular as submani- 
folds of  H are not open, since an arbitrary small deformation can lead to 
a final state that corresponds to manifold topology (perform a small defor- 
mation near the "reaction vertex"). 

Since the singular manifolds are in certain sense limiting cases of  
regular manifolds, the sets SH(t~j) for a given topology tf must belong to 
the compactification of the set SH(t~). 

For reasons explained in the introduction, I take as the basic geometric 
object in the present approach,  not the space SH( t )=  Map(t,  H) /Di f f ,  but 
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the mapping space Map(t, H). This means that configuration space must 
be replaced by the union of the corresponding mapping spaces: 

U Map( ti, H) u [ U Map( to, H) ] 
i t _ q  

The mapping spaces should be glued together by identifying the mapping 
spaces Map(t0, H) as limiting cases of the spaces Map(ti, H), i = 1, 2. 

One can indeed find an elegant description for the limit tl ~ t12 <- t2, 
and the geometrization of the space Map(t0, H) does not differ from the 
geometrization of Map(t, H) in any essential respect. It is not clear whether 
one could regard the spaces Map(t0, H) as measure-zero sets of the whole 
mapping space. Fortunately, this question does not seem to be relevant for 
the formulation of the theory. 

The superiority of the mapping space approach manifests itself in the 
calculation of the S-matrix elements. In the previous approach the evalu- 
ation of the S-matrix elements necessitates the calculation of overlap 
integrals of superfields over some submanifold of SH consisting of submani- 
folds with topologies intermediate between initial and final topologies. Thus, 
one faces the problem of evaluating the integration measure (formally 
defined as the measure associated with the induced submanifold metric). 

In the present approach the calculation of the overlap integrals needed 
to obtain S-matrix elements can be performed using the same formalism 
as used for the calculation of the various scalar products in Map(t, H). 
One can perform these integrals in the nice geometry of the mapping space 
Map(t0, H) and it is to be expected that overlap integrals are fixed to a 
high degree by symmetry considerations alone [local M4• SU(3) is the 
isometry group of Map(t~, H)]. 

2.2. Geometrization of Map(X, H) 

2.2. I. General Considerations 

The configuration space SH (t) associated with a single particle of fixed 
topology t can be related to the space Map(X, H) of maps from an abstract 
3-manifold X to the space H. The image f (X)  of X defines a 3-surface in 
H. The maps g and f which differ only by a diffeomorphism d of X; 
g =fo d, obviously define the same surface. 

The most straightforward approach to the construction of the quantum 
theory in the space SH(t) of surfaces obtained by identifying the diffeo- 
related points of Map(X, H) (t denotes the topology of X) 

SH( t) = Map(X, H)/Diff 
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This approach (Pitk/inen, 1986) is perhaps not the most elegant formulation, 
since the geometrization of the space SH(t) is not straightforward. 

The new approach is based on the observation that any diffeoinvariant 
field defined in Map(X, H)  can be regarded as a field in SH(t). Thus, the 
alternative recipe for the realization of the general coordinate invariance is 
as follows. 

Take the space Map(X, H)  as the basic geometric object and give it 
diffeoinvariant geometric structure and require that the physically accep- 
table solutions of the field equations are diffeoinvariant. 

The main reason behind the change of our attitude (Pitk~inen, 1986) 
is that the space Map(X, H)  in the case of H = M 4 • CP2 can be regarded 
as a coset space (Freed, 1985; de la Harpe, 1972), 

Map(X, H)  = G/F 

G = Map(X, M4x  SU(3)) 

F = Map(X, SU(2) x U(1)) 

G is the loop space consisting of maps X ~  M 4 •  S U ( 3 )  and has natural 
gauge group-like structure defined by the pointwise multiplication of maps, 

f l  ~ = (ml + m2, s,~ s2) (1) 

The space F is the loop space of maps X~SU(2)x U(1) and can be 
regarded as a subgroup of the group G. 

The gauge group SU(2) •  U(1) is present simply because the iden- 
tification of the points of loop space differing by a mere local SU(2) • U(1) 
transformation implies that the map can be regarded as a map to M 4 • CP2 
as required. 

Of course, the group operation does not necessarily lead to a spacelike 
3-surface, and thus the causality requirement implies that the allowed maps 
correspond to an open subset of the loop group. I believe that this restriction 
is not essential. 

What makes this space so promising with regard to the formulation of 
the theory is that it can be regarded as an infinite-dimensional symmetric 
space (de la Harpe, 1972; Helgason, 1962; Freed; 1985). The following 
properties of the symmetric spaces makes clear why the space G seems to 
be the correct object with regard to the formulation of the theory. 

1. The isometry group of the coset space G/F is G in the natural left 
invariant metric of G/F. In our case it is the local M4• SU(3) and can be 
identified as the local gauge group of color gravitational forces. Requiring 
that the various metric structures are diffeoinvariant, the symmetry group 
of the theory extends to the semidirect product of Diff(X) and G. 
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2. Since the metric of G/F is obtained by left translation from the 
metric in some fixed point of G~ F, it is clear that the Riemannian connection, 
the vielbein connection, and the curvature tensor are describable in purely 
Lie-algebraic terms. Symmetric spaces are constant-curvature spaces; the 
curvature tensor is a covariantly constant quantity, invariant under G. 

3. The Lie algebra associated with the loop space G is a Kac-Moody  
algebra (Lie algebra of local gauge transformations) and since it is the 
isometry group of the configuration space, we can expect that the solutions 
of the super-d'Alembertian can be classified into irreducible unitary diffeoin- 
variant representations of  this group. Also, the evaluation of the S-matrix 
elements and interaction vertices is facilitated by the enormous symmetries 
of the theory. 

Of course, the formulation based on the use of the space SH(t) might 
be equally promising, if one could give for the space SH(t) a G-invariant 
metric. I have, however, not been able to show whether this space allows 
a G-invariant metric or not. The difficulty is basically that Diff is not 
subgroup of G and thus its relation to the group G is different than the 
relation of the group F. 

2.2.2. Geometry of Map(X, H) 

In order to understand the general structure of the loop space, it is 
useful to study the structure of the loop space G (Freed, 1985; de la Harpe, 
1972). 

The tangent space of G corresponds to the Lie algebra LG of local 
M4• SU(3) gauge transformations. This Lie algebra is generated by the 
elements 

A gA Jm=s~x (2) 

where the functions sm define a complete scalar function basis S for the 
surface X and ga are generators of M4• Thus, the Kac-Moody  
algebra is direct product of the function algebra S and the finite-dimensional 
Lie algebra g, 

LG=S| (3) 

It is natural to divide this algebra into two parts, 

LG= gOSl| =gOt (4) 

where g corresponds to constant scalar functions and generates symmetries 
in "center-of-mass" degrees of freedom. $1 is the space of nonconstant 
scalar functions. 
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A natural scalar product in g is defined by the direct sum of the 
Minkowski metric and the canonical scalar product of simple Lie algebras, 

(X, Y) = Tr(Ad X, Ad Y) (5) 

Ad X is the representation matrix of the SU(3) generator X in the adjoint 
representation. 

A diffeoinvariant scalar product in the space of scalar functions is 
defined by the integral over X in the integration measure dx defined by 
the induced metric defined by the imbedding (Pitk/inen, 1981, 1983, 1985, 
1986) 

( f  g) = f fg dx (6) 

The scalar product in $1 x g is defined by the tensor product of the metrics 
associated with g and $1. Of course, the ditteoinvariance of the scalar 
product at the Lie algebra level does not yet guarantee its invariance at the 
group level. In fact, this scalar product as such does not provide a diffeo- 
invariant scalar product in G. 

In the case of the coset space CP2 w e  can assume that only the Lie 
algebra generators corresponding to the orthogonal complement of the 
H = SU(2) x U(1) subalgebra appear in the expansion of  the tangent vector 
of the factor space and the scalar product is defined by the unique Ad H- 
invariant metric. 

The left invariant metric in the coset space G/F can be constructed 
by mimicking the corresponding construction for the finite-dimensional 
spaces (Freed, 1985; de la Harpe, 1972; Helgason; 1962). 

1. Assume that the Ad F-invariant metric is given at some arbitrarily 
chosen point g of G. The Ad F is the Jacobian of any transformation 

g ~fgf-1; f ~  F (7) 

at the point g. Forgetting for a moment the requirement of diiteoinvariance, 
one could construct the metric of the space G/F mimicking directly the 
finite-dimensional construction. 

2. Define the metric at other points of the coset space by the left 
translation h; the metric at point hg is obtained by contracting its indices 
with the Jacobian Dh(g)  of the map g~ hg. 

How can the obtained metric be made ditteoinvariant at all points of 
G/F? In order to be diffeoinvariant, the scalar function part of the metric 
should be expressible in a form (6) at all points of G/F. The simplest scalar 
product (6), however, depends on the determinant of the induced metric 
and this depends on the point of G/F. 
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Clearly, one should somehow modify the scalar product for scalar 
functions. In fact, there are several possibilities, since one can insert suitable 
differential operators into the simplest definition of the scalar product. 

We shall find in the sequel that the construction of diffeo- and G- 
invariant metrics is closely related to the problem of finding nontrivial 
central extensions for the algebra LG; central extension defines a metric 
in Map(t, H) .  Diffeoinvariance in fact implies that the metric is a K/ihler 
metric. Therefore, we shall treat the two problems on the same footing. 

2.3. Central Extension 

2.3.I. General Consideralions 

The Lie algebra of the isometry group differs from the Lie algebra 
appearing in the quantized string model in one important respect: all 
M4-type generators commute. In the quantized string model we have an 
algebra of  annihilation and creation operators and this feature seems to be 
crucial for the physical interpretation of the theory. 

This result is not fatal to our quantization program, however. I shall 
show that "quantization" has a purely geometric interpretation in the TGD 
approach. 

The point is that in the string model the algebra generating physical 
states can be regarded as a central extension of the commuting algebra, 
which would correspond to the commuting infinite-dimensional isometry 
algebra. This means the addition of a term proportional to the unit matrix 
to the commutation relations of  the "classical" commuting Lie algebra, and 
its effect is the same as that of the quantization. 

That this central extension has a purely geometric description becomes 
clear from the following finite-dimensional example. In order to get a 
respectable spinor structure in CP2 one must add a suitable multiple of a 
C P  2 K/ihler potential to the ordinary spinor connection defined by the 
vielbein. 

Remarkably, the addition of the K/ihler potential can also be regarded 
as a central extension of  the original SU(3) Lie algebra. This modification 
is obtained by replacing in the differential operator representation of the 
Lie-algebra generators the ordinary derivatives with U(1) covariant deriva- 
tives defined by the Kfihler potential. 

The modified commutation relations contain a term which is the con- 
traction of  the curvature form of the K/ihler form with the Lie-algebra 
generators appearing in the commutator. This modification indeed defines 
central extension; the commutation relations are given by 

[J~, 17" 1 = [X,'-Y] + nJ(X, Y)Id (8) 

where J is the K/ihler form of  CP2 and Id is the unit matrix. 
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Jacobi identities are satisfied because the curvature form is closed as 
a two-form. This condition is equivalent to the requirement that the allowed 
central extensions of the Lie algebra are in one-one correspondence with 
the nontrivial cocycles of the second cohomology group of the space where 
the group in question acts. 

Since this procedure introduces central extension purely geometrically, 
it is reasonable to try to generalize it to the infinite-dimensional case. 

1. Construct a K/ihler structure in the space t spanned by nonconstant 
Lie-algebra generators. The corresponding K~ihler form must be covariantly 
constant and thus also closed. The existence of Kfihler structure implies 
that the part t of the tangent space of G / F  can be complexified: 

t = t++ t_ (9) 

The complexification corresponds to the use of a complex function basis. 
t_ is the complex conjugate of  t+. 

The Kahler form has nonvanishing elements only between t+ and t_ 
and the elements of the K~ihler form are, apart from sign factors, equal to 
the elements of  the metric tensor. 

This is an important result concerning the diffeoinvariance of the central 
extension. If one can find a left G-invariant and diffeoinvariant K/ihler 
form, then one has also obtained a metric with these properties and the 
problem of finding a left- and diffeoinvariant metric for G~ F is solved. 

We shall find that the left invariance of the KShler form must be 
understood in the generalized sense described earlier besides performing a 
local gauge rotation for the Lie-algebra generators, left translation also 
induces a transformation in the Hilbert space $1 of nonconstant scalar 
functions in X. 

2. Define the central extension by replacing the ordinal ,  derivatives 
in the differential operator representation of the G-algebra with the covariant 
derivatives defined by the K~ihler potential. 

2.3.2. General Form of the Extension 

The first task is that of finding the general form of the central extension 
at the Lie-algebra level. Let the central extension be given by 

[X, Y] = [X,'"Y]+ f (X,  r ) Id  (10) 

( /d  denotes the unit matrix). Here one can use the following results (God- 
dard-Olive, 1983; Kac, 1983) from the construction of central extensions 
in the string model. 

1. The Jacobi identities imply the condition 

f (X ,  Y , Z ) + f ( Y , Z , X ) + f ( Z , X ,  Y) (11) 

+ a x f (  Y, Z)  + avf(Z,  X)  + azf(X,  Y) = o 
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defining what is meant by a 2-cocycle in group cohomology (Kac, 1983). 
Here the derivatives axf are Lie derivatives of the function f under the 
infinitesimal transformation defined by X. 

2. Derivations of the Lie algebra defined by the condition 

d[X, Y] = [dX, Y] + [X, dY] (12) 

of the Lie algebra give rise to possible central extensions via the formula 

f(X, Y)= k(dX, Y) (13) 

Here ( . , . )  is some scalar product for the Lie-algebra elements. Now we 
can use the natural scalar product defined by the induced metric in X. 

Cocycle conditions are satisfied provided the terms of the type 
axf( Y, Z) vanish identically in the cocycle conditions, which means that 
derivation is left invariant. 

3. Any element A of  the finite Lie-algebra element defines a trivial 
derivation through the formula 

dX = [A, X]  (14) 

As already mentioned, in the case of CP~ this kind of extension leads to a 
nontrivial result; one obtains a respectable spinor structure and, depending 
on the nature of the extension t = 0 or t = 1, representations of the color 
group carrying anomalous hypercharge. Also, fractionation of the elec- 
tromagnetic charge becomes possible. 

The commutator action of the color hypercharge is equivalent to the 
contraction of the corresponding vector fields with Kfihler form, which 
indeed corresponds to a nontrivial element in the second cohomology group 
of C P  2 . 

It turns out that the requirements of diffeo- and left invariance under 
G allow this central extension only for the rigid part g (constant scalar 
functions of the G-Lie algebra). 

4. Any element of the Lie algebra of Diff(X) defines a derivation 

f(X, Y)= (j. VX, Y) (15) 

Here j denotes some vector field defined in X. 
Assuming G-invariance (I shall discuss this requirement later), the 

cocycle condition reduces to the condition satisfied by the scalar functions 
f, g, and h: 

( j .  V(fg), h) + cyclic p e r m = 0  (16) 

The cocycle condition is satisfied provided the diffeomorphism generator 
has vanishing divergence in the induced metric, 

V . j = O  (17) 



986 Pitk~inen 

Thus, the vector field j defines central extension if it generates a volume- 
preserving diffeomorphism in the induced metric. Since j is an identically 
conserved current in the induced metric, it must be determined by the 
embedding. 

The requirement that central extension (and metric and K/ihler form) 
is diffeoinvariant is satisfied provided its dependence on the induced metric 
somehow cancels. This is achieved i f j  is some topological current that does 
not depend on the metric. In the case of M4x  CP2 the projection of the 
Kiihler form indeed defines this kind of current, 

j = * J (18) 

Here * denotes the Hodge *-operator (contraction of the K~ihler form with 
three-dimensional permutation symbol). The dependence of the scalar 
product on the metric cancels, since this current is inversely proportional 
to the square root of the metric determinant. 

This current has vanishing divergence for purely topological reasons 
(Bianchi identities). Note that this term is present only in the three- 
dimensional case and the conserved charge associated with this current is 
the homology equivalence class of the two surface in question [the K~ihler 
form can be regarded as the generator of Hz(CP2)]. 

The metric determined by this extension is not Hermitian unless one 
adds a suitable boundary term to the extension. The necessity of this term 
is easy to understand by transforming the central extension term to a form 
where the operator j .  7 acts on the function on the right-hand side of the 
scalar product. 

The Hermiticity is achieved provided one associates the extension term 
defined by the boundary vector field given by 

i = - 2 e  * B(g3/g2) 1/2 (19) 

to each boundary component. Here B denotes the K/ihler potential and * 
is the two-dimensional Hodge *-operator. The sign factor e ensures that 
the orientation of the boundary component can be regarded as that induced 
from X. 

5. The central extension defined by j is expected to lead to a strongly 
degenerate metric; for all zero-eigenvalue solutions the diagonal element 
of the metric vanishes. A natural attempt to get rid of this degeneracy 
is to look for some boundary term restricted to the zero-eigenvalue sub- 
space of j .  

Because of their two-dimensionality, the boundary components carry 
a natural K/ihler structure uniquely defined by the induced metric. In real 
coordinates the K~ihler form is simply the two-dimensional permutation 
symbol e ~ .  
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Hence the cocycle defined by the formula 

f(X, Y) = (*(dPX ̂  deY)) dx (20) 

(P  projects to the space of zero eigenvalues o f j .  V) does not depend on 
the induced metric and is a good candidate for central extension. 

This part of the central extension does not depend on the imbedding 
of X and thus the requirements of G- and diffeoinvariance are automatically 
satisfied. 

Summarizing, the general form of the central extension is given by 

f (X  x gA, y X gB) = g(X, y ) ( g A ,  gB) + k2 Tr(AdyPog A, Pog B) 

g(X' Y)=kfxJ" V X Y d X - 2 k  f~x i. VXYdX 

+kl I *(dPXAdPY) dx (21) 
d~ x 

Here P0 is the projector to the subspace of constant scalar functions; P 
projects to the subspace of  zero-eigenvalue functions o f j .  V; and y denotes 
the color hypercharge generator. 

2.3.3. G-invarianee of the Central Extension 

The G-invariance of the central extension is not a trivial issue, since 
the concept of  left G-action is somewhat problematic. The simplest 
definition of left G-action is the following one. 

1. G acts only on the finite-dimensional Lie-algebra generators via left 
translation and leaves the scalar function basis invariant. For the scalar 
function basis associated with the boundary part of  the central extension 
one can apply this definition. The reason is that central extension does not 
depend on the imbedding. 

The interior part of the central extension, however, depends on imbed- 
ding, since the operator j .  V depends on the induced K~ihler form. Thus, 
the matrix elements of  the central extension change in the left translation. 
As a consequence, the additional terms in the cocycle condition are non- 
vanishing. 

A straightforward calculation shows that the G-invariance condition 
applied to the infinitesimal color rotation 

~S k = Srn(X)j Ak 

reduces to the form 

f *(dHa^dsmAds,)srdx=O; si6S, i=m,n,r (22) 

Here HA denotes the Hamiltonian of the color isometry generated by the 
Lie-algebra generator j a k  ~ ga.  
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This condition is not satisfied unless one poses some additional con- 
straints on the scalar functions appearing in (22). An obvious condition of 
this kind is the requirement that allowed scalar functions depend only on 
a single coordinate variable of X locally. 

This coordinate variable is naturally the coordinate variable changing 
along the field lines of the magnetic field defined by the K~ihler form. 

This kind of  condition makes the metric strongly degenerate; 3-mani- 
folds become effectively one-dimensional as far as the properties of the 
interior part of the central extension are concerned. One can regard this 
kind of degeneracy as an undesirable feature. 

One can, however, invent a more general definition of G-action and 
G-invariance: 

2. G also acts on the scalar function basis. A natural definition of this 
action is obtained by requiring that the left invariant scalar function basis 
be an eigenfunction basis of the opera tor j .  V and possibly some differential 
operators commuting with it. This requirement is expected to define left 
translation of the scalar function basis uniquely for sufficiently small left 
translations. If the diagonal elements of the operator j .  V are left invariant 
in the diagonal basis, the central extension is left invariant. 

The invariance of these matrix elements is not at all a trivial property. 
In the sequel we shall find, however, that under small deformations of X 
the diagonal matrix elements of the operator j .  ~7 are indeed invariant. 
Invariance follows from the fact that these elements are interpretable as 
topological invariants. Thus, the central extension and thus also the 
geometry of Map(X, H)  are left invariant in this generalized sense. 

2.3.4. Kiihler Structure Associated with the Central Extension 

In the finite-dimensional case the central extension defined the K~ihler 
potential leads to a central extension term proportional to the K~ihler form. 
Clearly, the matrix defined by the matrix elements of the operator j .  V can 
be identified as an integer multiple of the Kfihler form (and appropriate 
part of the metric) associated with the central extension. 

The K~ihler structure makes possible the construction of a complexified 
basis for the Lie algebra. This operation corresponds in the finite- 
dimensional case to the complexification of the SU(3) Lie algebra by 
requiring that the Lie algebra forms an eigenbasis of the K~ihler potential. 
The result is the representation of  the algebra in the standard eigenbasis of 
hypercharge Y and isospin /3. 

In the infinite-dimensional case the complexification corresponds to 
the requirement that the function basis $1 is an eigenbasis of the differential 
operator j .  V and possibly some other differential operators commuting 
with it (analogues of isospin generator). 



Quantum Topological Geometrodynamics 989 

Since j has a vanishing divergence, it is an anti-hermitian operator and 
the eigenfunctions are orthogonalizable. For the topological current the 
metric disappears from the scalar product and we can require the scalar 
functions to be eigenfunctions of the operator g~/2j. V = D, 

g l/2j. Vs  = ips (23) 

rather than the operator j .  V as in the general case. Thus, the dependence 
of the eigenfunction basis on the metric disappears. 

The eigenfunction basis is in general complex and the complex conju- 
gate eigenfunctions correspond to opposite eigenvalues. The Lie-algebra 
generator and its complex conjugate correspond to a single pair of creation 
and annihilation operators. The product of two elements in the basis is also 
an eigenfunction of D and eigenvalues are additive in multiplication. 

The central extension defined by the KShler form is invariant under 
diffeomorphisms of X and also under the infinite parameter group of 
canonical transformations of CP2 leaving the induced KShler form invariant. 
In fact the canonical transformations act like U(1) gauge transformations 
on the Kahler potential. 

This means that the spectrum of the operator D is same for two 
3-surfaces having CP2 projections related by a canonical transformation. 
The dependence of M 4 coordinates on X coordinates is irrelevant. 

For the standard Kac-Moody  Lie algebra the matrix elements of the 
K~ihler form appearing in the central extension are integers. This property 
plays an essential role in the construction of the unitary representations for 
the Kac-Moody  algebra. We shall now show that diagonal elements of the 
interior part of the central extension are indeed integer-valued provided 
the complexified functions with nonvanishing j eigenvalue can be regarded 
as maps from X to S 1, 

s = exp(i0), 0 ~ R (24) 

This restriction does not imply any loss of generality; in ordinary Fourier 
analysis the same assumption is made. 

The essential observation is that the map f :  X ~ H can be extended to 
a map g : X  ~ H • S ~ by the rule x ~ (h, 0). These maps can be classified 
by the third cohomology equivalence class of the image surface g ( X ) .  This 
equivalence class is given by the product 

w3 = wl ^ w2 (25) 

where w~ is the first cohomology class o f S  ~ and w2 is the second cohomology 
class of CP2. The expression of  this homology equivalence class for f ( X )  
is given by the projection of the form w3 and is equal to the diagonal element 
o f /9 .  
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One can understand the general features of the eigenvalue equation 
associated with j rather easily. Let the surface X possess a region where 
the induced Kiihler form is nonvanishing. Assume also that this region has 
three-dimensional CP2 projection as it generically has locally (the assump- 
tion about two-dimensionality of the projection does not alter the argument 
essentially). The projection of the surface in CP2 is representable as a surface 
for which some Hamiltonian H is constant. 

By a suitable choice of canonical coordinates (P, Q, P~, Q~) one can 
represent the surface in the form 

P = H = const 

The coordinates of X can be chosen so that the imbedding is expressible 
in the form 

(O, P1, QI) = (Xl, x2, x3) 

The nonvanishing component of the induced K/ihler form J is constant. 
In these coordinates the eigenvalue equations reduce to the following 

form: 

os/oQ = ips (26) 

The equation is thus of the same form for all surfaces with nonvanishing 
K/ihler form. A general solution to this equation is of the form 

exp(ipQ) exp[ f (P l ,  Q1)] (27) 

Since the solutions obey the multiplicative superposition property, p must 
be an integer multiple of some constant, 

p = na (28) 

The operators O/OP1 and o/oQ1 define two vector fields commuting with the 
vector field j, and their eigenvalues are integer multiples of some basic 
eigenvalue. Thus, the scalar function basis can be regarded as a generaliz- 
ation of the plane wave basis. 

In the plane wave basis labeled by the integers (nl,  n2, n3)= ~, the 
modified commutation relations reduce to the very simple form 

[ jA,  J~rBlJ --_jccA~tCj,~+~ + kn6(~ + rfi )Id + boundary term (29) 

The integer n is the third homology equivalence class defined earlier. As 
far as the interior part of  the central extension is concerned, the algebra 
has the structure of a centrally extended Kac-Moody algebra appearing in 
the string model. 

Also, the diffeomorphism generators can be chosen to be an eigenbasis 
of the generators O/Oxi. One can construct the basis of diffeogenerators from 
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the mutually commuting generators O/Oxi by forming a direct product  of  
this basis with the complexified scalar function basis. 

As a consequence, one can associate with each diffeomorphism gen- 
erator a positive or negative eigenvalue as in the case of the string model. 
In the construction of the representations of the centrally extended Lie 
algebra of local M4• SU(3) the possibility to classify diffeogenerators in 
this manner is of central importance. 

How uniquely is the constant appearing in the interior part of the 
central extension determined? From the representation theory of centrally 
extended Kac-Moody  algebras (Kac, 1983) we know that it is an integer 
multiple of  some uniquely determined quantity. Thus we obtain the same 
result as in the case of CP2. 

I shall now show that the diagonalized form of the boundary part of  
the central extension is integer-valued. Denote by z the local complex 
coordinate defined on 6X. Thus one can represent the space t of boundary- 
restrictions of  the zero-eigenvalue scalar functions as a direct sum t+ + t_, 
where t+ and t_ correspond to holomorphic and antiholomorphic functions, 
respectively. 

One can interpret the map (z, :?) ~ (s, g) as a section in the complexified 
tangent bundle Tc 6X. The homology equivalence class of the image of 6X 
in T~ BX is integer-valued, since Tc 6X has nontrivial second homology 
group. The homology equivalence class of the image of 6X, the winding 
number of  the 6X vector field defined by (s, g), is proportional to the quantity 

f [a(s, ~)/o(z, ~)] dz ^ d~ (30) 

Thus the diagonal elements of the extension are integer-valued. The non- 
diagonal matrix elements between maps with different winding numbers 
are expected to cancel. In sphere topology the orthogonality is evident: the 
maps are proportional to the powers of z and the orthogonality is obvious. 
Thus the boundary part of the central extension is indeed integer-valued, 
as it should be. 

2.3.5. Topological Structure of the Central Extension 

The following observations suggest that the topological structure of  
the central extension plays a central role in the understanding of  the general 
features of the theory. 

1. The magnetic field defined by the Kfihler form is divergenceless and 
has the same topological structure as the velocity field associated with an 
incompressible three-dimensional flow. 

2. The field lines of  the magnetic K/ihler field are closed lines and 
define what is called a Seifert-Threlfall fibration of the 3-manifold (Jehle, 
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1977; Seifert and Threlfall, 1931, 1932, 1950; Rolfsen, 1976). The simplest 
fibrations are closed vortices, which correspond to magnetic fields confined 
inside a torus, and one can describe this magnetic field topologically by 
two winding numbers nl and n2, which indicate how many times the closed 
field line winds around the central axis and the circular axis. 

Clearly, the vector field defining the interior extension takes a derivative 
along the magnetic field line and one can associate with each elementary 
magnetic structure of this kind a complete basis of scalar functions. 

3. The three-dimensionality of the 3-space leads to an additional rich- 
ness in the topological structure: the vortices can become knotted and linked 
(Rolfsen, 1976). 

4. The presence of boundary components brings in additional struc- 
ture; nonclosed magnetic flux loops connecting two boundary components 
become possible. 

5. There are some quite intriguing points of contact with superconduc- 
tivity (Goldstein, 1975). The scalar function corresponds to the order para- 
meter of the superconducting phase (phase of the probability amplitude 
describing Cooper pairs). The diagonal element of central extension can 
be regarded as an expectation value of the magnetic flux in the "state" 
defined by the scalar function and its integer-valuedness corresponds to the 
quantization of magnetic flux in the sense in which it is defined in supercon- 
ductivity. 

The formation of Cooper pairs in superconductivity might be inter- 
preted as a change of the magnetic structure of X; magnetic flux tubes are 
formed between the boundary components corresponding to electrons. In 
a similar manner the penetration of a magnetic field into superconductors 
of type II in the form of vortices can be interpreted as a change of the 
magnetic structure. 

6. The constant-curvature property of the metric does not seem to be 
completely global; rather, Map(X, H) divides into constant-curvature pieces 
characterized by the topology of the induced magnetic field. 

The worst possible degeneracy of the metric of Map(X, H) occurs for 
surfaces for which the induced K~hler form vanishes. The induced K~ihler 
form vanishes when the surface in question has CP2 projection, which is a 
Lagrangian submanifold (Pitk~inen, 1981, 1983, 1985, 1986) defined by the 
property that the projection of the K~ihler form to it vanishes. Lagrangian 
manifolds are in general two-dimensional submanifolds of CP2; they are 
analogous to the submanifold P = const of the classical phase space with 
(q, p) coordinates. Certainly, this set of 3-surfaces has measure zero, since 
a small deformation leads to a surface with a nonvanishing K~ihler field. 

For these surfaces the central extension is given by the boundary part 
of this term. For closed 3-surfaces of this type the degeneracy is even greater. 
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This degeneracy phenomenon gives support to the idea that elementary 
particles in certain circumstances correspond to boundary components of 
the 3-manifold. 

7. Magnetic structure is reflected in the properties of the scalar function 
basis and thus also in the properties of the metric and spinor structure of 
the configuration space. For example, spinor components are in direct 
correspondence with the scalar function basis. 

These observations suggest that magnetic structure should be regarded 
as a carrier of the information needed to arrange individual elementary 
particles to various forms of macroscopic matter. Indeed, the topology of 
the magnetic fields allows unlimited possibilities to store information. There- 
fore, the concept of magnetic structure might prove to be useful in the 
description of certain many-particle phenomena. For example, the concepts 
used to describe the gross features of the properties of fluid flow (eddiness, 
degree of turbulence) are expected to be useful in the description of magnetic 
structure and thus also in the description of some features of the many- 
particle system with given magnetic structure. 

2.4. Calculation of the Various Geometric Quantities 

The G-invariance of the geometry makes it possible to evaluate explicit 
expressions for the various quantities related to the geometry of the configur- 
ation space. One can calculate the quantity in question at suitably chosen 
point of G / F  and use left translation to obtain its value at other points of 
G/F .  

The metric is the direct sum of three terms: the H metric, a part 
corresponding to the interior part of the central extension, and a part 
corresponding to the boundary part of the central extension, 

H = h |  (31) 

The interior part of the metric tensor separates into a tensor product of the 
H metric and the metric in the space of the scalar functions. In the 
complexified eigenfunction basis labeled by eigenvalues one has 

H ( J  A, J~) = G(m,  n) x h( t A, t B) 
(32) 

G(fft, •) = N(n3) 6(r~ + ti) 

N(rh) is the homology equivalence class for the image of X under the map 
defined by sm. 

The corresponding decomposition of the vielbein is given by 

E A = [ N ( m ) ] I / 2 G r ~ •  A= (m,A) (33) 

where we have defined the "reduced vielbein" G ~ via the formula 

G~ = [ ( i /2)  ]1/216(rfi + fi) - i 3(rh - ~)] (34) 
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The boundary part of the metric has the analogous decomposition 

H(J~, J~)= H(m, n)+ h( t A, t B) 
(35) 

H(m, n)= N(m) ~(rn+ n) 

N(m) is the winding number associated with the eigenfunction sin. 
The corresponding decomposition of the vielbein is given by 

E y'= Nl/2Gm X ea; .~ = (m, A) (36) 

The calculation of the connection and curvature tensor is not quite so 
simple, since the metric is not necessarily nondegenerate. In the left invariant 
vector field basis jA one can use the following formula (Freed, 1985) for 
the calculation of the Riemann connection: 

Y= (AdxY- Ad* Y-AdyX) /2  (37) 

Here Ad* is the adjoint of the map Adx with respect to the scalar product 
defining the metric. For Adx one can derive an explicit representation 
directly from its definition (Freed, 1985): 

(Ad* Y, Z) = ( Y, AdxZ) (38) 

Thus one obtains for the operator Ad* the expression 

Ad*x = - D- 1PAdxDP 

-2 f dz AdxPoO/Oz-2 f dS AdxPoO/02 (39) 

Here the operator D is the differential operator gl/2j. V; z denotes the 
complex coordinate for the boundary component, and Po and P project to 
the subspace of scalar functions with zero and nonzero eigenvalue of D, 
respectively. 

The curvature tensor can be calculated from the general expression 

R(X, Y) = [Vx, Vy]-V[x, v] (40) 

In the eigenfunction basis the operator D can be replaced with the appropri- 
ate eigenvalue. 

The general element of the curvature tensor is given by the expression 

R(X, Y,Z, U)=A([X,[Y,Z]], U)+B([Y[Z,X]], U) (41) 

Here R(X, Y, Z, U) denotes the contraction of the curvature tensor with 
the tangent vectors of configuration space interpreted as elements of the 
Lie algebra. A and B depend on the generators X, Y, Z, and U. 
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The Riemann tensor is proportional to the metric tensor. We expect 
the proportionality constant to be infinite. The curvature scalar is certainly 
infinite. These quantities do not appear in the super-d'Alembertian, although 
the curvature scalar appears in the square of the Dirac operator. 

2.5. Spinor Structure in Map(X, H) 

In previous work (Pitk/inen, 1986) I suggested a definition of a configur- 
ation space spinor as a map that associates with a surface X an H-spinor 
field defined in X. One can, however, define configuration space spinors 
without any reference to the H-spinor field defined in X and the resulting 
formalism is more elegant (Stinespring, 1965). 

As in the finite-dimensional case, we define gamma matrices by requir- 
ing that they generate the metric tensor H (Eguchi et aL, 1980) 

{FA, FB} = 2 H ~ I d  (42) 

The indices A correspond to the pairs (n, A), where n refers to the scalar 
function basis and A refers to the H-vielbein. 

We divide the gamma matrix algebra of Map(X, H)  into the direct 
sum g@ t. The subspace g of  gamma matrices corresponds to constant scalar 
functions and can be identified as the space of  the H-gamma matrices. The 
subspace t of gamma matrices corresponds to nonconstant scalar functions. 
The gamma matrices in g and t are represented in the form 

FA=FA@Id;  F A e g  
(43) 

F/i = F9@Fi,; ]~A C t 

respectively. The spinors of M a p ( X , H )  are thus expressible as tensor 
products of  H-spinors and the spinors associated with t. 

The Kfhler  structure of the Map(X, H)  makes it possible to transform 
the gamma matrices in t to an algebra of anticommuting annihilation and 
creation operators (see Appendix). The complexified gamma matrices are 
defined by the formula 

F• ~ F~z~iJffF ~ (44) 

and obey an algebra that reduces to that obeyed by annihilation and creation 
operators by multiplication with factors of ,/~/2, 

{F+ a, F_ ~ } = 2Ha~ld; {F~ a, F~} = 0 (45) 

It is natural to represent complexified gamma matrices in terms of  annihila- 
tion and creation operators, and configuration space spinors form a rep- 
resentation of the algebra of  creation and annihilation operators defined 
by the bare gamma matrices. 
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The abstract Hilbert space where the annihilation and creation 
operators act is assumed to be same for all surfaces X. The universality of 
the spinor space is necessary, since in the calculation of S-matrix elements 
one must be able to relate the spinors associated with different 3-topologies 
to each other. 

A given spinor in t is obtained by applying a finite number of creation- 
operator-type gamma matrices to a "vacuum spinor" annihilated by all 
annihilation-type gamma matrices ("vacuum spinor" is analogous to right- 
handed neutrino), 

u =l-I a,,Uo, a,,Uo=O Vn (46) 
rl  

This representation of spinors implies a considerable simplification concern- 
ing the calculational properties of  the theory. The point is that only the 
annihilation-type gamma matrices appear  in the super-d'Alembertian. Thus, 
in the calculation of scalar products and various quantities of  physical 
interest, only a finite number  of the gamma matrices appearing in the field 
equations give a nonzero result when applied to a given configuration space 
spinor. 2 

The spinors obtained by applying a single creation operator to the 
vacuum are in one-to-one correspondence with the spinor field basis of  X. 
One can interpret these spinors as a counterpart  of  the Fourier components  
of  the spinor field in conventional field theories. 

The spinor components corresponding to the application of several 
creation operators to the vacuum have no counterpart  in conventional field 
theories. It might well be that they imply an additional degeneracy analogous 
to the family replication phenomenon.  Thus, the hope of obtaining a theory 
predicting three or four or even a finite number  of  fermion families seems 
to be rather meager! 

Observe that for X with trivial magnetic structure one can associate 
the configuration space spinors with boundary components,  since it is 
possible to choose the corresponding part of  the eigenfunction basis so that 
each scalar function is concentrated around a single boundary component.  
Matter resides on boundaries for these surfaces. 

One can construct a spinor connection in terms of the vielbein connec- 
tion V using the standard defining formulas expressing the covariant con- 
stancy of  the vielbein. The covariant derivative of a spinor field can be 
defined exactly as in the finite-dimensional case (Eguchi et al., 1980). 

2Obviously the Fourier components of the so called Ramond field appearing in string models 
have interpretation as the complexified gamma matrices of the configuration space associated 
with string. 
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Experience with the finite-dimensional case suggests strongly that in 
the case of H = M 4 X C P  2 the K/ihler Potential term must be included in 
the definition of the spinor connection in order to obtain a well-defined 
spinor structure in the configuration space. 

Thus, we expect that the spinor covariant derivative is given by 

D = O+ V +  nBId (47) 

where B is the K/ihler potential associated with the central extension of 
the G-Lie algebra; n is an odd integer. 

The extension of the theory to the case of 3-manifolds with several 
components is quite straightforward. The scalar function basis can be written 
in the form (X = X1 w. �9 �9 u Xn) 

g + t  I+ .  �9 -+ t, (48) 

Observe that center-of-mass degrees of freedom are not additive. The 
imbedding of the gamma matrices associated with t must span the whole 
Hilbert space. One can choose the imbedding so that the gamma matrices 
of Xi correspond to the following subalgebra of creation and annihilation 
operators spanned by 

-b 

an, an, n = i + n k ,  k e N  (49) 

3. SUPERFIELD FORMULATION 

In this section I formulate the concepts of superfield and super-d'Alem- 
bertian. I show that under certain conditions, super-d'Alembert equations 
can be solved in closed local form. 

3.1. Superfield and Super-d'Alembertian 

The generalization of the concept of complex-valued probability ampli- 
tude to a Grassmann algebra-valued probability amplitude, superfield, offers 
an attractive possibility to describe both bosonic and fermionic states with 
arbitrary high fermion number using a single fieldlike quantity. I shall first 
develop the finite-dimensional formulation. The generalization to the 
infinite-dimensional case is trivial. 

The key concept of the finite-dimensional superfield formulation is the 
local Grassmann algebra (Berezin, 1966) spanned by the "theta parameters", 
which are in one-to-one correspondence with the spinor basis associated 
with a given point of  H ;  the superfield is simply a map associating with 
each point of H an element in this algebra. In the formulation of the 
superfield dynamics the concept of a "super covariant derivative," changing 
the fermion number by one unit, and that of "super-d'Alembertian" as a 
generalization of the ordinary d'Alembertian, play key roles. 



998 Pitkfinen 

Consider first the definition of the Grassmann algebra structure. Let 
{Urn} be a complete orthonormalized basis of spinors at the point h of H 
and {tT,~} the conjugate basis. Associate with each element Urn (am) an 
anticommuting theta parameter 0m (Ore). The requirement that the quantities 
iT0 and 0u are invariant under vielbein rotations implies that theta para- 
meters transform as spinors under vielbein rotations. 

Theta parameters generate a Grassmann algebra at the point h. By 
"globalizing" this concept, one is led to the concept of the "spinorial 
Grassmann algebra bundle" having as its fiber the local Grassmann algebra 
generated by the theta parameters. The spinorial Grassmann algebra bundle 
might be regarded as a spin-half version of the Grassmann algebra bundle 
generated by 1-forms of H. 

Any element of the Grassmann algebra can be expressed as a poly- 
nomial of the theta parameters: in the obvious short-hand notation 

S = S(M, N)OMO N (50) 

The coefficients of the various monomials are complex numbers and behave 
as multispinors under vielbein rotations, since the Grassmann algebra 
elements must be invariant under vielbein rotations. 

The superfield can be defined as map that associates to each point of 
the space H an element of the Grassmann algebra associated with that 
point. In a more advanced formulation, a superfield is a section in the 
Grassmann algebra bundle. The component representation of the superfield 
is obtained from the polynomial representation of the Grassmann algebra 
element. 

An important feature differentiating between the concept of the 
superfield used in the supersymmetric field theories and in the present 
context is that now the components of the superfield are assumed to be 
complex numbers; in supersymmetric field theories the odd components 
are assumed to be anticommuting numbers (Stetle, 1983). 

The conjugate S of the superfield is obtained by performing Dirac 
conjugation for the component multispinors and making the replacement 
0,~-~ ~ 

The scalar product for two superfields S and R is given by the formula 

( S, R) = J SR DO Dff dh (51) 

where the integration over the Grassmann algebra is defined according to 
the usual rules (Berezin, 1966) and dh denotes the standard metric integra- 
tion measure in H. 

Super covariant derivatives are defined as 

D~ = il/2[O0~m q- (O~-F),,,Dk] (52a) 
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l~)~m = il/2[O0~ m "b (U0~)mDk] (52b) 

Here plus and minus denote the chiralities of  the spinors. The derivative 
Dk is the usual covariant derivative containing a spinor connection part 
and a metric connection part. Theta parameters are by definition covariantly 
constant with respect to the covariant derivative Dk and the components 
of the superfield transform as multispinors. 

In conventional theories (Stelle, 1983) and also in my previous work 
(Pitkfinen, 1986) super covariant derivatives are not defined as here. Usually 
the term containing the covariant derivatives Dk is proportional to the 
imaginary unit and the factor i 1/2 is absent. The presence of the i 1/2 factor 
guarantees that the anticommutation relations of the modified super 
covariant derivatives are identical with those of  the conventional theories, 
as one can easily verify. 

The reason for modifying the definition of  the super covariant derivative 
is the need to obtain a nontrivial scalar product for the solutions of the 
super-d'Alembertian. It turns out that this requirement excludes the conven- 
tional definition of the super covariant derivatives. 

One can replace the gamma matrices appearing in the definition of the 
super covariant derivative with annihilation operator-type modified gamma 
matrices (see the Appendix), which can be defined for the configuration 
space having K~ihler structure. This replacement leads in the infinite- 
dimensional case to decisive calculational simplifications. 

This is due to the fact that configuration space spinors correspond to 
states created by a finite number of creation-type gamma matrices applied 
to a vacuum spinor annihilated by annihilation operator like gamma 
matrices. Therefore, only a finite number of modified gamma matrices 
appearing in the super covariant derivative give a nonvanishing result when 
applied to a given configuration space spinor. 

It will be found that the presence of the modified gamma matrices 
makes it possible to reduce the field equations to a simple algebraic con- 
dition. 

The general form of  the super-d'Alambertian studied in this paper is 
given by the expression 

[] = a { O ~ ,  D+}+ b{D+~, D2,} (53) 

The variational principle given by 

S = (S, � 9  (54) 

leads to the expected form of the super-d'Alembert equations. 
We shall find that the requirement of positive-definite scalar product 

in the space of solutions implies that one of the coefficients a and b appearing 
in (53) must vanish. 
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The formal generalization of the finite-dimensional formulation looks 
quite straightforward; all formulas generalize as such to the infinite- 
dimensional case. Also, the generalization of the formalism to the case of 
nonconnected 3-manifolds is straightforward. 

In practice it is enough to consider the connected case only. The reason 
is that for 3-manifolds with several components one can represent the 
solutions of the superfield as superpositions of the product of single-particle 
superfields. 

3.2. General Solution of the Field Equations 

3.2.1. Solution Ansa t z  

The constant-curvature and K~ihler properties of the configuration 
space imply that field equations can be reduced to a simple algebraic 
condition for the super-d'Alembertian obtained by replacing ordinary 
gamma matrices by the annihilation operator-type modified gamma matrices 
(see the Appendix). 

The solution ansatz is obtained as a generalization of the explicit 
solution to the so-called chiral condition (Stelle, 1983) and is given by 

S = exp(X) T; X = 0~70 (55) 

Here 7 is the (possibly modified) Dirac operator. 
The solution ansatz can in certain sense be regarded as a superfield S 

obtained by replacing coordinate variables h k appearing in the superfield 
T with the new coordinate variables 

y k  = h k q_ ~Fk o 

This replacement is defined by the Taylor expansion defined by the exponen- 
tial term. The variables y k  a r e  constant with respect to the sum of the super 
covariant derivatives. If the configuration space is flat, one can indeed use 
the variables y k  instead of h k a s  coordinate variables and the field equations 
are expected to reduce to the condition 

OOT = 0 (56) 

The equation is purely algebraic and easily solvable. When configuration 
space is nonflat, the curvature form of the spinor connection is expected 
to change the situation somewhat. 

In order to see what happens, one must commute the super-d'Alember- 
tian with the exponential term, i.e., calculate the quantity 

U-I[-~ U; U = exp(X) (57) 
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or equivalently evaluate how the quantity 

A = U OOU =~ (58) 

differs from the operator []. 
By expanding the quantity in question in terms of  the multiple commu- 

tators one obtains the following representation: 

a = a o + Y ~ a . / n ! ;  A . = [ X , A . _ I ] ;  ao=O0 (59a) 
n 

The coefficients A. are given by 

al  = O0+ (FkO+)mDk + Offf~( O-Fk)mDk 

az  = 2~  if-0+; ~ = I2tk'DkD~ (59b) 
k l  A3 = H (D,.F.k + ZF,.kD.)ff-O+ ffFkO 

The terms A., n > 4, contain covariant derivatives of the curvature form of 
the spinor connection. For constant-curvature spaces all terms A.,  n > 4, 
vanish, If A. vanishes for some n, then all Am, m > n, vanish also. 

The modified metric tensor appearing in the formulas (59a) and (59b) 
is defined through the anticommutator of  the modified gamma matrices, 

/_}k, = {pk, F'}/2 (60) 

When the Dirac operator appearing in the field equation is modified so that 
it contains only annihilation operator-type gamma matrices, this tensor is 
equal to the metric tensor of Minkowski spacd and thus its contraction with 
the curvature tensor of  the configuration space vanishes identically. Thus, 
the field equations indeed reduce to the desired simple algebraic condition 
and we can solve them exactly! The basic reason for this drastic sim- 
plification is the Kiihler structure of the space Map(X, H )  implied in turn 
by the Kiihler structure of CP2. 

So far the treatment has been completely general. The solution must, 
however, be such that it allows positive-definite norm. The study of the 
conserved probability current shows that a positive-definite scalar product 
can be generated dynamically provided the solution is proportional to the 
following term: 

U = exp(iO+KO -) (61) 

where the matrix K connects only the theta parameters of the second 
chirality. This is so because in the scalar product the conjugation operation 
performed on the second member of the scalar product completes the 
expression so that all theta parameters are present. 

If the super-d'Alembertian contains only the derivatives a0 + and Ot~-, 
the exponential term is annihilated in the operator appearing in the condition 
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(56). Thus, the need to obtain a positive-definite scalar product necessitates 
the matter-antimatter asymmetric form of the super-d'Alembertian. Note, 
however, that the asymmetry is not present in the general form of the 
solution. 

The dependence of the solution ansatz on the coordinate variables of 
the configuration space is arbitrary and it is clear that the solution obtained 
does not necessarily have conserved norm. Also, the convergence of the 
solution is by no means clear. The same phenomenon of course occurs for 
ordinary eigenvalue problems. What are the necessary conditions for obtain- 
ing a conserved scalar product? 

In the finite-dimensional case the nonconservation of the scalar product 
is easy to understand. The solution has arbitrary space-time dependence 
and thus the scalar product is certainly time dependent. Clearly, one needs 
some kind of mass shell condition. The requirement that the solution satisfies 
the modified d'Alembert equation and has positive energy, 

Q S = 0 (62a) 

Po -> 0 (62b) 

is perhaps the most natural mass shell condition, but is by no means dictated 
by the field equations. 

In finite-dimensional theory this kind of condition forces the solutions 
to be massless and the orthogonatization of different solutions is possible. 
The same thing happens in fact in the infinite-dimensional case (the modified 
d'Alembert operator is equal to the M 4 d'Alembertian). Thus, this condition 
can be only a good approximation to the truth (recall the natural mass scale 
given by the Planck mass). 

A more general condition guaranteeing a conserved scalar product is 
based on the requirement that the superfields T generating the solution 
belong to unitary representations of some central extension of the local 
M4• SU(3). States inside the irreducible representation should be eigen- 
states of the operator 

p2 _ k C  (63a) 

where p2 is the mass squared operator, C is the Casimir operator associated 
with "vibrational" degrees of freedom (nonconstant scalar functions), and 
k is some constant. The field equations pose no constraints on the value of 
this parameter. Neither does the requirement of irreducibility. 

The value of k determines only the mass scales inside a representation. 
The requirements of convergence and single-valuedness for the superfield 
are expected to pose conditions on the possible values of k. The naive value 
for this constant is k = 1. The elementary particle mass scale is obtained if 
k is of the order of 10 -3s. 
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The simplest solution ansatz is based on the assumption that the matrix 
K is proport ional  to the chiral projector P_. In the finite-dimensional case 
this is certainly a natural choice and turns out to be a unique choice in the 
infinite-dimensional case. The underlying reason is that the calculation of 
the scalar product  in the infinite case involves integration over an infinite 
number of  theta parameters;  when K is equal to the projection operator 
the calculations simplify decisively and lead to well-defined finite results. 
For a general matrix K one would encounter the difficulties associated with 
the definition of the trace and determinant of an infinite-dimensional matrix. 

It should be noticed that the solution ansatz for the field equations 
also works in the constant-curvature case without the modification of the 
gamma matrices, provided one adds to the field equation a suitable combina- 
tion of terms A3 and A4. As a consequence, the quantity U -~ [] U in (57) 
reduces to the operator 00. I believe, however, that the modification of the 
gamma matrices is a more elegant way to achieve exact solubility. 

3.3. Scalar Product 

The conserved current associated with the scalar product  ($1, $2) is 
given by 

= f S I (Ak+Bk)S2  jk  DO DO 

a = (o-Fk)m 00~ + (Fk0+),, 00 + 

B = 2 ~  00 + (64) 

S~=exp(iO+O-+X)T~; X=OY~O 

The term B k proportional  to 0-0  + is a potential source of  divergence in 
the infinite-dimensional theory. For an exponential ansatz this term, 
however, cancels in a theory based on the modified gamma matrices, 

( A k + B k ) e x p ( i O + O - + X ) T = e x p ( i O + O - + X ) A k T  (65) 

The underlying reason for the vanishing of this term is the commutator  
relation B k = [X, A k] already encountered and the vanishing of the commu- 
tator [X, B k] in the theory defined by modified gamma matrices. 

Thus the current can be cast into the form 

= f T1 exp(iS)AkT2 j k  DO DO 

(66) 
S = ( O0 - iO~ O + iO~ O ) 

and has the same general structure as a transition amplitude between states 
T1 and T2 in a field theory described by the free field theory action S. 
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The scalar product can be evaluated diagrammatically by noticing that: 
1. The term 00 corresponds to the free field action and gives rise to a 

propagator that is a unit matrix connecting lines of different chirality. The 
functional determinant det K coming from the functional integral as a 
contribution of vacuum bubbles can be taken out of the integral when K 
is proportional to the unit matrix. 

2. The term iOY~O is analogous to an interaction term giving rise to a 
two-particle vertex, where the differential operator iY" appears as a vertex 
factor and connects lines of the same chirality. Note that the differential 
operator acts on the ingoing or outgoing particles only. 

3. The theta parameters appearing in the fields Tt and AkT2 correspond 
to incoming and outgoing particles. 

Some general properties of the scalar product should be noticed. 
1. The innocent-looking cancelation of the term B k is of uttermost 

significance, since it contributes to the scalar product a term proportional 
to the trace of the matrix K (Feynmann diagram connecting the theta 
parameters appearing in the factor Bk). 

This factor is infinite as a dimension of the spinor basis for the 
configuration space. Thus, one should give up the simple solution ansatz 
and replace the matrix K with a more complicated matrix having a finite 
trace. Then, however, the determinantal factor would become dependent 
on the surface X and one would face all the divergence difficulties of the 
conventional regularized quantum field theory when trying to find a 
definition for the trace and determinant of the matrix K. 

2. We found earlier that the addition of a suitable combination of 
terms A 3 and A4 to the super-d'Alembertian would reduce the field equations 
to the purely algebraic condition (56) for constant-curvature spaces. This 
kind of theory also would be free of divergences. The mechanism canceling 
potential divergence terms is essentially the same as that which guarantees 
that the field equations are satisfied. The form of the scalar product is 
identical to that obtained in the theory based on modified gamma matrices. 

3. The appearance of the term exp(iff+0 -) in the general solution is 
necessary in order to obtain a nonvanishing norm for the general solution. 
On the other hand, the exponential factor can be present in the solution 
only if the super-d'Alembertian contains only the other half of the theta 
parameters. 

4. The fact that only the second half of theta parameters appears in 
super-d'Alembertian implies matter-antimatter asymmetry, which manifests 
itself as a vanishing of the norm for all states containing only antiparticles 
(the operator A k annihilates the generating state). The norm is in general 
nonvanishing for a state containing an arbitrary number of antifermions 
and at least one fermion. 
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5. The modification of the super covariant derivatives is necessary in 
order to obtain an acceptable scalar product. In the theory based on the 
conventional super covariant derivatives the "act ion" defining the scalar 
product would reduce to the term 00 as far a s  M 4 degrees of freedom are 
concerned. 

6. In order to obtain a conserved scalar product, some kind of mass 
shell condition is necessary. I have already discussed the general form of 
this condition. 

4. SYMMETRIES OF THE THEOR Y 

4.1. Generalized Chiral lnvariance 

The absence of the super covariant derivatives acting on 0 + and 0- 
implies generalized chiral invariance: the separate conservation of fermion 
numbers associated with different chiralities of  H-spinors  (and configu- 
ration space spinors also). The interpretation of the conserved fermion 
numbers as baryon and lepton numbers is natural. 

The requirement of  nonvanishing norm, however, implies a spon- 
taneous breaking of the generalized chiral invariance. The presence of the 
exponential term exp(iO§ -)  implies that only the quantity B - L  is weli 
defined for states having nontrivial norm. Since the separate conservation 
of B and L is not broken at the level of  the field equations, one has good 
hopes that the nonconservation effects are sufficiently small to guarantee a 
sufficiently long lifetime for the proton. 

One could even hope that the breaking of chiral invariance for 
individual solutions of  the field equations is totally contained in the 
exponential term: the solution is a product of  the exponential term and of 
a term with well-defined B and L; thus, one could associate well-defined 
B and L with each state. The study of the pointlike limit of  the theory 
shows that this seems to be possible. 

The asymmetry between matter and antimatter at the level of  the field 
equations is the second consequence of the exclusion of the super covariant 
derivatives acting on 0 § and 0-. This asymmetry, however, is not reflected 
in the form of the general solution. 

Only the properties of  the norm reflect this asymmetry. The norm of 
a state containing only antiparticles is vanishing. The absence of states 
containing only antifermions from the spectrum could provide an explana- 
tion for the observed matter-ant imatter  asymmetry. For a given 3-manifold 
the number  of  states of  net fermion number  N > 0 is larger than the number  
of  states with the net fermion number  - N .  This asymmetry is necessarily 
present whether the system is in thermal equilibrium or not. 
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Thus, the observed asymmetry is a remnant of the asymmetry already 
present in the early phases of cosmic evolution, when antiparticles and 
particles were in thermal equilibrium. 

4.2. Color Symmetry 

I shall discuss the color symmetries in considerable detail since the 
realization of color symmetry has been a source of considerable confusion. 

One of the basic ideas of the TGD approach has been the color 
gravitational analogy, which becomes really manifest in the infinite- 
dimensional theory, where the local M + x  SU(3) becomes the isometry 
group of the configuration space. 

One also can understand the color gravitational analogy as in the 
Kaluza-Klein approach. Gluon fields on X correspond to the projections 
of the isometry currents of CP to the 3-surface. The connection defined by 
these currents makes ordinary irreducible color partial waves covariantly 
constant. In the pointlike limit one can thus eliminate CP2 derivatives totally 
from the covariant derivatives appearing in the field equations by replacing 
them with the action of the color connection: 

O k f r n  . . J  m n = ~Jk t a , f  (66) 

Here t~, is the representation matrix of ta in the representation defined by 
partial waves fm. Of course, this formula holds only for ordinary representa- 
tions of the color group. 

A dangerous feature for the TGD approach is the fact that CP2 allows 
only triality zero partial waves. How is it possible to get triality 1 partial 
waves for quarks? 

The attempts to solve this problem have led to the concept of the 
anomalous hypercharge. CP2 partial waves are not necessarily ordinary 
representations of the color group, but can have anomalous color hyper- 
charge, so that triplet partial waves also become possible. 

The spinors of CPz indeed have intrinsic anomalous hypercharge 
proportional to their electromagnetic charge ( Ya = 2Qem) and this suggests 
that the relationship between electromagnetic charge and anomalous hyper- 
charge is completely general. 

Thus, it is tempting to identify quarks as particles having integer-valued 
intrinsic electromagnetic charge but moving in pseudo triplet partial waves. 
The anomalous hypercharge associated with these waves gives an anomalous 
electromagnetic charge to the leptonic particle and it behaves like a frac- 
tionally charged quark. 

The fractionation of electromagnetic charge can be understood by the 
inspection of formula (66). Since triality It[ = 1 pseudo representations of 
the color group differ from ordinary ones by a phase factor not representable 
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as a function of CP2 coordinates, one cannot transform the ordinary CP2 
derivative to a mere connection term, but an additional term proportional 
to the K~ihler potential appears on the right-hand side of equation (66). 

The effect is a change in the structure of  the spinor connection. As 
shown in previous work (Pitkhnen, 1983, 1985), the spinor connection of 
CP2 (or rather its projection to the 3-surface) can be identified with the 
electroweak gauge field, and the additional term proportional to the K~ihler 
potential changes the coupling structure so that fractional electromagnetic 
charge results. 

I have suggested several different scenarios to describe quarks and 
leptons in the TGD framework. The first scenario (Pitk~inen, 1983) was 
based on the assumption that different chiralities of H-spinors correspond 
to quarks and leptons and the intrinsic hypercharge of quarks is fractional. 
This scenario is in contradiction with the idea that triplet partial waves 
carry anomalous Qem. Of course, the separate conservation of B and L is 
easy to explain. 

The second scenario (Pitkhnen, 1985) is based on the idea of the 
anomalous hypercharge and on the assumption that quarks are simply 
leptons moving in It I = 1 partial waves. 

The final scenario (I hope so !) is in some sense a compromise between 
the previous two scenarios: quarks and leptons correspond to different 
chiralities of  H-spinors and have leptonic intrinsic charges, and quarks 
move in It[ = 1 partial waves. The separate conservation of B and L is 
spontaneously broken. 

The above physical picture can be put on a sound mathematical basis. 
The partial wave analysis in CP2 (Pope, 1980, 1982) can be solved exactly 
for all important differential operators defined in CP2 (Dirac operator, wave 
equations associated with various spins). 

The main results are; 
1. The problem can be reduced to the solution o fa  d'Alembert equation 

for a scalar field coupled to the Khhler potential via an appropriate charge 
s, which depends on an individual solution. 

2. The d'Alembert equation for the charged scalar particle is exactly 
soluble and the solutions correspond to irreducible representations of the 
color group. When the scalar field carries Khhler charge s these representa- 
tions are of the type (p, p + s) (s > 0) or (P  - s, P) (s < 0). Thus, the concept 
of a t = 1 representation with an anomalous hypercharge is indeed com- 
pletely well founded mathematically. 

3. The solutions of  the Dirac equation carry same total anomalous 
hypercharge. The anomalous hypercharges of  color partial waves thus 
compensate the different intrinsic hypercharges associated with spinor com- 
ponents with different electromagnetic charge. 
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This result is in contradiction with the idea that anomalous hypercharge 
is proportional to electromagnetic charge and indeed leads to an unphysical 
consequence. Only the states having the quantum numbers of a right-handed 
neutrino or a right-handed d-quark move in the expected color representa- 
tions. For example, the charged leptons move in decouplet color partial 
waves (Pope, 1980, 1982). 

The last result is very important since it favors very strongly the scenario 
where the CP2 Dirac operator is replaced with a modified Dirac operator 
having an identically vanishing square. As a consequence, we can choose 
the spinor basis so that all spinors are solutions of the same scalar d'Alember- 
tian with an appropriate anomalous hypercharge, in accordance with the 
idea that the total anomalous hypercharge is proportional to electromagnetic 
charge. Nothing forbids the spinors of different chiralities to move in t -- 0 
and It I = 1 partial waves, respectively. 

The fractionation of the electromagnetic charge and the appearance 
of [t[ = 1 pseudorepresentations can be understood in a mathematically 
rigorous manner in terms of central extension for the Lie algebra of the 
color group. The replacement 

j. V ~j~Dk (67) 

where Dk is the covariant derivative defined by the K/ihler potential, in the 
differential operator representation of the Lie algebra of the color group 
leads to a new Lie algebra, which is the central extension of the original 
algebra. Thus, the pseudorepresentations correspond to ordinary representa- 
tions of the centrally extended SU(3). 

It is important to emphasize that the choice of the particular central 
extension is not dictated by the particular central extension appearing in 
the field equations, and thus it is possible to obtain both t = 0 and It[ = 1 
states, although the spinor connection of the configuration space corre- 
sponds only to the t -- 0 representations. 

In fact, the couplings of the quarks to electromagnetic charge can be 
made fractional by the direct construction of bosonic charge matrices, as 
the study of the pointlike limit of the theory shows. Therefore, we believe 
that problems related to color and electromagnetic charge are finally solved. 

4.3. Super Gauge Invariance and Supersymmetry 

Any superfield generated from a scalar function is a vacuum solution 
with zero norm and one can always add to the superfield this kind of 
solution. I called this symmetry Abelian super gauge invariance in (Pitk~inen, 
1986). Clearly, the function of this symmetry is to eliminate the states 
generated by pure scalars from the theory. 
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A more interesting symmetry is N = 1 global supersymmetry of the 
pointlike limit of the theory. In order to understand the emergence of  the 
N = 1 global supersymmetry, consider three properties of the right-handed 
neutrino spinor; 

1. Covariant constancy of the right-handed neutrino and its conjugate. 
2. The right-handed neutrino is annihilated by the modified gamma 

matrices Fk+. The Dirac conjugate of the right-handed neutrino is annihilated 
by the matrices Fk_. 

3. Quark lepton orthogonality allows both H-chiralities for the right- 
handed neutrino, as will be found in the sequel. This implies that supersym- 
metry acts on the quark and lepton sector of the theory. 

The N = 1 supersymmetry is present also in the complete theory pro- 
vided the "vacuum" spinor is covariantly constant. The possible covariant 
constancy of this spinor depends on the nature of the central extension 
defining the spinor connection of the configuration space. It might be that 
for a suitable choice of the integers appearing in the Kiihler potential the 
covariant constancy is possible, although I have no proof for this. The 
requirement of N = 1 supersymmetry would thus fix the spinor connection 
of the configuration space completely. 

The covariant constancy implies that the quantities 

A = 5 + U;  B = VO-  (68) 

formed as contractions of  the spinors U and V having the quantum numbers 
of right-handed neutrino with the "wrong" thetas behave as constant with 
respect to the super covariant derivatives, and one can obtain the super 
partner of a given state S by multiplying it with the quantities A and B. 
The condition 00 T = 0 holds identically for the state obtained in the sym- 
metry. 

Note that the generalized chiral invariance and covariant constancy of  
the right-handed neutrino are necessary for this symmetry. No assumptions 
concerning the form of  the Dirac operator are needed. 

The operation can be interpreted physically as the addition of a right- 
handed antineutrino of either chirality to the state. We shall find that when 
the particle in question has unphysical helicity this operation indeed leads 
to a super partner of  the original particle. Otherwise, the particle number 
of the state increases by one unit. 

When modified gamma matrices appear in the super-d'Alembertian 
and annihilate the CP2 spinor with quantum numbers of the right-handed 
neutrino (in fact, the right-handed neutrino can be defined in this manner), 
also the multiplication with the quantity 

= 00 + (69) 
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and its reverse as supersymmetries provided the new state satisfies the 
condition O-O T = O. 

In addition, the right-handed neutrino must be solution of the M 4 
Dirac operator P appearing in the field equation and thus corresponds to 
a fermion of unphysical helicity. Thus, this symmetry generates only true 
elementary particle states. Observe that this supersymmetry is not present 
in a theory defined by ordinary gamma matrices. 

This supersymmetry acts only in the leptonic sector. This is due to the 
fact that the conjugate spinor of  a right-handed neutrino is not annihilated 
by the modified gamma matrices. This asymmetry might be the ultimate 
reason for the different color properties of  the two associated with two 
H-chiralities. 

Associated with N = 1 supersymmetry is so-called R-invariance (Stelle, 
1983). The number of right-handed neutrinos of  either chirality is conserved. 
One can associate with each particle state a definite R-chirality and ordinary 
particles are identified as R = 0 particles. 

This concept has proved very useful in the construction of the solutions 
of the M 4 • CP2 super-d'Alembertian and in finding the physical interpreta- 
tion for the individual elements of  the basis. In particular, the ordinary 
electroweak gauge bosons correspond to R = 0 states and spin-one particles 
with nonstandard couplings correspond to R = 1 states. 

4.4. Local M 4 • S U ( 3 )  Symmetry  3 

The enormous isometry group of Map(X,  H)  is expected to simplify 
decisively the construction of the physical states and the calculation of  the 
S-matrix elements and vertices. I shall now show that the state construction- 
leads to a formalism resembling the quantization of string models (Goddard-  
Olive, 1983). 

The constant-curvature property makes it possible to simplify calcula- 
tions decisively. The general form of the K a c - M o o d y  algebra is universal 
in the basis where extension is diagonal; the diagonal elements of  central 
extension are proportional to integers. Thus, the construction of the rep- 
resentations can be carried out in general form without worrying about the 
details of the scalar function basis. 

The more detailed treatment necessitates the evaluation of the 
degeneracy of scalar functions associated with a given value of the diagonal 
element of  the central extension. This degeneracy certainly depends on 
surface X, since 3-surfaces allow nonequivalent magnetic structures. 

3It is probable that the local M 4 symmetry in fact extends to local Poincar6 symmetry. This 
is in accordance with the idea that local Poincar6 group is the gauge group of gravitational 
interactions. 
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Mimicking the state construction in string models (Goddard-Olive, 
1983; Kac, 1983), we assume: 

1. There exists a vacuum state [0>, which is (a) annihilated by the 
diffeogenerators corresponding to positive eigenvalues of the differential 
operator D defining the interior part of the central extension, 

dml0)= 0; m > 0  (70) 

(b) annihilated by the Kac-Moody generators with positive eigenvalues, 

Ja]0) = 0; m > 0 (71) 

(c) an eigenstate of the diffeogenerator D, 

DI0) = hi0) (72) 

(d) corresponds to an irreducible representation of the isometry group of H. 
2. Physical states are generated by polynomials of the Kac-Moody 

generators jA, m > 0, of the type 

IPhys) = [I A. J,,,;]0); mi > 0 (73) 
rt l i  

3. Physical states are (a) annihilated by the diffeogenerators with 
negative eigenvalues and (b) eigenstates of the generator D; the eigenvalue 
is the same for all states in the representation. 

This assumption does not necessarily imply any diffeoanomaly, since 
only a trivial central extension of the Diff Lie algebra leads to this condition, 
as will be found soon. 

Vacuum and physical states are not annihilated by the positive eigen- 
value diffeogenerators. The states obtained in this manner have, however, 
vanishing norm provided diffeo- and Kac-Moody generators with opposite 
eigenvalue are Hermitian conjugates of each other: 

(JAm)t : J-am (74) 

This condition ensures that the action of the diffeomorphism generators to 
the physical states creates only zero-norm states. The possible existence of 
a nontrivial central extension of Diff (diffeo anomaly) spoils the zero-norm 
property. 

4. The irreducibility of the representation requires that physical states 
are eigenstates of some Casimir-type operator. Field equations do not, 
however, fix this operator uniquely. Thus, although the metric of G/F is 
determined by a unique central extension, the solution of the field equations 
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does not exclude the possibility that the Casimir operator belongs to a 
different central extension than the one defining the spinor connection. In 
the finite-dimensional case we shall find that leptonic and quarklike states 
correspond to different central extensions in CP> 

The simplest guess is that states are "massless" in the sense that the 
Casimir operator naturally defined by the super-d'Alambertian annihilates 
them. In the general case this operator gives the Casimir operator of G/F. 

When the Dirac operator appearing in the field equations is defined 
by the modified gamma matrices, this operator reduces to the ordinary M 4 
d'Alembertian! The physical states would be massless. This result is not as 
crazy as it looks, since the mass scale of ordinary elementary particles is 
extremely small compared with the Planck mass scale associated with CP2. 
In this sense the masslessness condition is a good starting approximation. 

Irreducibility does not, however, imply the vanishing of the mass 
squared operator. This suggests a possibility of understanding the mass 
scale problem: require only that the mass squared operator is proportional 
to the eigenvalue of the centrally extended Casimir operator of G/F minus 
the Casimir operator of M a x  CP2. The value 1038 for the proportionality 
constant makes the states approximately massless. The freedom to choose 
the value of the string tension in the string model is the mathematical 
equivalent of this freedom. 

What fixes the value of the elementary particle mass scale? Perhaps 
the convergence requirement of the exponential expansion of the solution 
of the super-d'Alembertian leads to mass quantization. Also, the requirement 
that the continuation of the single-particle superfield in the whole configur- 
ation space is single-valued might lead to mass quantization. 

In the quantization of the string model one encounters the so-called 
conformal anomaly; the Virasoro algebra (generating holomorphic maps 
of the string to itself) suffers a nontrivial central extension. Could something 
like this also happen now? 

One can extend the central extension to an extension of the Lie algebra 
of the diffeomorphism group in an obvious manner, 

[X, Y] = [X, Y] + kf [j, X]  Ydx Id + boundary terms (75) 

Here the scalar product is the usual scalar product for the vector fields 
defined in X. This extension is, however, trivial and by a suitable redefinition 
of the diffeogenerators (add a suitable multiple of the unit matrix to the 
original diffeogenerators) of the generator basis the commutation relations 
reduce to the original ones. Whether one can find a nontrivial extension is 
an open question. It might well be possible to construct the general form 
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of possible extensions by applying considerations similar to those used in 
the string model (Goddard-Olive, 1983). 

5. POINTLIKE LIMIT OF THE THEORY 

5.1. Definition of the Pointlike Limit 

The most obvious guess for the pointlike limit of the theory is the 
theory defined by the super-d'Alembertian of H. A closer inspection shows 
that the limiting procedure need not be so simple. 

The point is that all color partial waves are possible for the H super- 
d'Alembertian, suggesting that ordinary elementary particles move in all 
possible CP2 partial waves. This result is in disagreement with the conven- 
tional ideas about color. 

On the other hand, the general properties of the Kac-Moody rep- 
resentations suggest that only a finite number of CP2 partial waves is 
possible. The representations of the Kac-Moody group are known to corre- 
spond to the so-called highest weight representations of the Kac-Moody 
algebra (Goodman and Wallach, 1985) and these satisfy an important 
constraint, which I now describe. 

Each representation can be generated from a vacuum vector (described 
in the context of symmetry considerations) transforming according to some 
irreducible representation of SU(3) with highest weight X. The vacuum 
representation corresponds clearly to the representation associated with the 
multiplet of CP2 partial waves associated with the degrees of freedom that 
appear in the super-d'Alembertian at the pointlike limit. 

This representation is not arbitrary, however. The integer k defining 
the central extension satisfies the following lower bound: 

k_>[s 61 (76) 

where 6 is some root vector associated with the Lie algebra of SU(3) 
(Goodman and Wallach, 1985). 

Thus, only a finite number of CP2 partial waves are possible for a 
generic surface and the number of possible partial waves can be easily 
evaluated. Somehow, color is forced into the vibrational degrees of freedom. 
It should be emphasized, however, that the generating solutions of the 
super-d'Alembertian might correspond to a central extension with arbitrarily 
large integer k. 

Thus, we can conclude that the various CP2 partial waves appearing 
in the pointlike theory correspond to different irreducible representations 
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of the Kac-Moody algebra. Furthermore, if only a single central extension 
is allowed, then only a few partial waves correspond to real states and the 
super-d'Alembertian of H does not give a reliable description of the point- 
like limit. 

A second argument against this simple-minded description of the 
pointlike limit is that configuration space spinors are in correspondence 
with the scalar function basis of X. For magnetically trivial 3-surfaces one 
can localize configuration space spinors to boundary components; matter 
resides on boundaries. In the pointlike limit, however, all these spinors 
disappear from the theory. Thus, one expects that higher fermion families 
disappear from the fermion spectrum in the naive pointlike limit. 

Consider now the problem of finding a definition of the elementary 
particle solution. The interpretation of all solutions as elementary particle 
states is certainly ruled out, since it leads to the prediction of elementary 
particles of very high lepton and baryon numbers (as high as four). Also, 
spins larger than two are allowed. A possible solution to this problem is 
afforded by the multiplicative superposition property of the solutions of 
the field equations. If  T1 and T2 generate solutions to the field equations, 
then also their product generates a solution of the field equations provided 
the condition O'OT1 T2 = 0 is satisfied. In fact, the solution generated by the 
product is the product of the solutions. 

Thus it is natural to define elementary particle solution as a solution 
that is not expressible as a superposition of products of  more elementary 
solutions. If the condition OOT1T2=O were satisfied for all ele- 
mentary particle pairs, physical states would form an algebra generated by 
elementary particle states. In fact, quarks and leptons with physical helicity 
satisfy the condition and indeed generate an algebra of many-fermion states. 
This is not true generally, however. 

The following principles are of considerable help in the construction 
of elementary particle states. 

1. Elementary particle states have well-defined baryon and lepton 
numbers in the sense that the fields T generating them must have well- 
defined B and L. Furthermore, states with different B and L must be 
orthogonal to each other. 

2. Elementary particle states are expressible in terms of various observ- 
ables related to physical particles (polarization vectors and tensors, charge 
matrices, H-parities, etc.). 

3. N = 1 global supersymmetry with associated R-invariance can be 
used to divide the elementary particles into ordinary ones (R = 0) and their 
super partners (R = +1). For example, only spin-one bosons having charge 
matrix typical for electroweak gauge bosons have R = 0, and charged spin-1 
bosons coupling to right-handed fermions are R = 1 states. 
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4. Elementary particle states can be regarded as superpositions of four 
types of fermions: 

(a) Physical fermions and antifermions annihilated by the operator ~, 

i~u = 0; (/30,/~) = (P0, - if)  (77a) 

These particles generate many-fermion states. The quark lepton orthogonal- 
ity is identically satisfied for these states; qL = O. 

(b) Unphysical fermions and antifermions annihilated by the 
operator p, 

/~u = 0 (77b) 

Together with physical fermions, these states generate elementary particles. 
For example, gauge bosons can be regarded as states of type LuLT+ r 

5. The norm of a physical state must be nonvanishing. A useful observa- 
tion with regard to the evaluation of the norm of the various candidate 
states is that in the norm the unphysical antifermion ~u//Tu must always 
contract directly with a physical fermion Lf/qf. 

For nonvanishing terms in the scalar product the unphysical fermions 
L~/qu either appear as the Dirac scalar product term FFkF (only one of 
them) or are directly contracted with a physical antifermion ~IT/LT. 

These requirements can be satisfied if: 
1. Corresponding to each/7,/~u, the state contains ~ / L f  with the same 

weak isospin. Example: the leptoquark states of t y p e / ~  and L~u,  where 
the bracket implies that the weak isospins are the same. 

2. The state is a suitable superposition of many-particle states. 
Example: the bosons are of type EuLf+~l, qf. 

Although the representation of states in terms of physical and unphy- 
sical fermions is not very illustrative, I believe that using this representation 
one could show that elementary particles satisfy certain generally accepted 
constraints: 

1. B - L  is equal to 0, +1, -1 ;  L and B are equal to 0, +1, -1. 
2. The largest value of spin and weak isospin is 2. 
In the sequel I shall show that the spectrum contains particles iden- 

tifiable as known fermions and bosons. Only one fermion family is found, 
in accordance with the idea that the family replication phenomenon has a 
topological origin. Of course, the configuration space spinors corresponding 
to more than one creation operator might provide an alternative explanation 
for family replication. 

5.2. Fermions 

One-fermion solutions of  different chiralities will be identified as quarks 
and leptons. Both leptonic and quarklike spinors are representable as 
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products of  the M 4 spinor u and the CP2 spinor v, and the M 4 spinor is 
annihilated by the matrix p defined in (5.2). 

The requirement that all fermions are annihilated by a negative-energy 
Dirac operator is essential for obtaining a nonvanishing norm for antifer- 
mions, to guarantee quark lepton orthogonality, and to give well-defined 
M 4 helicity for the fermion. 

Leptonic particles correspond to products of constant CP2 spinors with 
t = 0 partial waves in the (p, p) representations of SU(3). 

For quarks the CP2 spinor is assumed to have the following rep- 
resentation: 

U = d+ Uo, D = d_Do (78) 

The quarklike spinors Uo and Do are products of leptonic spinors with 
[tl = 1 pseudo partial waves in CPz. 

With the above choice, quarks are indeed mutually orthogonal. Only 
the scalar products of left/right-handed quarks need to be considered and 
u- and d-quarks are orthogonal because the square of the modified Dirac 
operator d+/d_ vanishes. 

In order to obtain left-handed u/d-quarks, one must choose just d_ 
and d+ in the above equations, since the modified gamma matrices appearing 
in d+ annihilate identically right-handed u spinors of CP2. 

Observe that the absence of the d operators in the definition of leptonic 
states is necessary: otherwise, one would not obtain the left-handed neutrino, 
due to the fact that both d+ and d_ annihilate the CPz spinor with the 
quantum numbers of the right-handed neutrino. 

The right-handed neutrino is exceptional in the sense that quark-lepton 
orthogonality allows both chiralities for it. This is due to the covariant 
constancy of the right-handed neutrino and the fact the quark superfields 
are proportional to the operators d+ and d_. As a consequence, the scalar 
product between quarks and right-handed neutrinos of both chiralities 
vanishes. This specific feature of the right-handed neutrino is essential in 
guaranteeing that the supersymmetry of the theory is consistent with the 
different assignments of color representations to different chiralities. 

An important feature of the construction is that quarklike spinors must 
move in triality-one partial waves. Otherwise, the lowest left-handed u-quark 
would disappear from the spectrum, since the action of covariant derivatives 
annihilates the covariantly constant right-handed d-spinor. 

5.3. Bosonic spectrum 

5.3.1. Spin-One Bosons with Zero Fermion Numbers 

We define spin-one bosons as particles characterized by a polarization 
vector either in Minkowski space or in CP2. The requirement of nonvanish- 
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ing norm implies the usual conditions for the Minkowski space polarization 
vector, 

P.  e = 0  e. e < 0  (79) 

Thus, only two polarizations are possible for massless states. 
When the polarization is in the direction of CP2 it is natural to assume 

that the polarization vector is proportional to one of the isometry currents 
of CP2 in order to obtain a quantity with well-defined color transformation 
properties. 

Spin-one particles are either vectors or axial vectors in the generalized 
sense: 

V = geQO (80a) 

a = O~QF90 (80b) 

These states are mutually orthogonal, for obvious reasons. The axial vectors 
are not found in the spectrum of observed particles. A nice explanation 
would be that the spontaneous breaking of  the generalized chiral invariance 
makes these particles massive, as happens in the breaking of the ordinary 
chiral invariance. 

The couplings of spin-one particles to physical and unphysical helicities 
are of the same or opposite sign. In terms of the helicity projectors 

P + = I ,  P-=[p,~]/2po (81) 

the charge matrices can be written in the form 

Q = Q o |  (82) 

where the matrices Q0 are superpositions of  CP2 sigma matrices. 
The four types of bosonic states are orthogonal to each other and have 

positive norm. The requirement that the state is orthogonal to an arbitrary 
quark lepton state excludes the bosons of type V+ and A_. Thus, the physical 
gauge bosons are of type V_ and A+. 

Consider next the charge matrices associated with spin-one bosons. 
There are altogether eight charge matrices associated to left- and right- 
handed spinors of  CP2. Thus, we must understand why the observed boson 
spectrum does not contain spin-one charged particles with right-handed 
couplings. 

The N = 1 supersymmetry provides a solution to this problem. The 
states corresponding to nonallowed charge matrices contain one index 
coupling to the right-handed neutrino and must be regarded as states 
obtained via supersymmetry from their fermionic counterpart and having 
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R- parity different from zero. Note that this argument does not exclude 
fractional charges for quarks, since in this case the electromagnetic charge 
matrix contains a part proportional to the tensor product of the right-handed 
neutrino and its antiparticle: R-parity is zero. 

Thus, N = 1 supersymmetry leaves only the charge matrices associated 
with the standard model. The requirement that the photon and Z ~ are 
orthogonal implies the orthogonality of the charge matrices and the value 
sin 2 0w = 9/26 for the Weinberg angle (Pitk/inen, 1983). 

5.3.2. Spin-two particles 

Spin-two particles can be constructed as two-particle states constructed 
from spin-one bosons. At least one of the spin-one bosons must be unphy- 
sical; otherwise, the state would represent a two-particle state of two physical 
bosons. 

The second boson must be physical. This assumption guarantees 
orthogonality to the states containing two quarks and two leptons. Thus, 
only the following types of spin-two particles are physical: 

V+V_; V+A+; A+A_; A_V_ (83) 

The graviton must correspond to a particle of type W or perhaps of a 
superposition of W and AA, for obvious reasons. The breaking of the 
generalized chiral invariance is expected to make the particles of type VA 
and AV (and perhaps AA) heavy. 

The fact that V_ couples with different signs to different spinor helicities 
is essential to guarantee the orthogonality of the state with respect to the 
two-photon state, when a fractional charge matrix is allowed for photons. 
The scalar product involves traces over the charge matrix and these vanish 
only due to the helicity properties of V_. I have found no argument to 
exclude charged gravitons. Of course, the electroweak symmetry-breaking 
is expected to make them massive. 

The color gravitational analogy suggests strongly that the gluon and 
the graviton have similar tensor structure. Gluons should simply correspond 
to particles of type W where the polarization vectors are given by ~' and 
J'A, with Ja denoting a generator of CP~ isometry. 

5.3.3. Leptoquarks 

One can construct also bosons with nonvanishing baryon and lepton 
numbers, which are expected to be massive for obvious reasons. These 
states are assumed to have definite baryon and lepton numbers and to have 
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the following general structure: 

A = OXO + 

A += O+X+O - (84) 

X = P v  x Qo x P• 

Couplings to different helicities are of opposite sign in order to guarantee 
orthogonality to lepton-lepton and quark-antiquark states. 

The polarization tensor P v  can have at least some of the following forms: 

[, ' , ,  e2]; 1k,~ k'' [Y'A, J ' ,];  [*', CA] 

The charge matrices could be the ones appearing in the representations of 
ordinary spin-1 bosons. 

We expect that the unphysical leptoquarks and spin-1 bosons together 
give rise to a multitude of particles, constructed typically from one unphy- 
sical and one physical particle. 

/ 

6. CONSTRUCTION OF S-MATRIX 

6.1. General Considerations 

The multiplicative superposition suggests the following formal pro- 
cedure for the construction of a unitary S-matrix. 

1. Construction of bare one-particle states. The field equations are 
solved in:the sets Map(t, H), where t denotes the connected manifold 
topology. We define the bare one-particle states as state functionals restricted 
to Map(t, H) and having the property that they are stationary solutions of 
the field equations in Map(t, H). 

In this context the meaning of the bare one-particle state is rather 
general; only the simplest 3-topologies are expected to correspond to 
elementary particles and the topologies obtained by forming connected 
sums of the simple topologies (say, by gluing particlelike 3-manifolds to a 
subset of a spacelike hyperplane of M 4) are expected to correspond to 
(gravitationally or otherwise) bound states of elementary particles. 

We assume that the bare one-particle states can be orthonormalized 
with respect to the conserved scalar product implied by the phase symmetry 
of the action and that this scalar product is positive definite, at least, when 
restricted to the set of "physical states." Furthermore, single-particle state 
functionals are assumed to form a complete set with respect to this scalar 
product. 

2. Construction of bare many-particle states. By multiplicative super- 
position the products of one-particle state functionals solving the field 
equations in Map(tn, H) are solutions of the field equations in Map(tn, H) 
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(set of n-component 3-manifolds with fixed topologies). It is natural to 
define the bare n-particle states as state functionals that vanish outside 
Map(t , ,  H)  and are superpositions of the products of one-particle state 
functionals in Map(tn, H).  The scalar product for single-particle states 
defines a natural scalar product for bare many-particle states. 

3. Construction of stationary states. Bare n-particle states are solutions 
of the field equations both inside and outside (trivially so) Map(tn, H) ,  but 
not in the boundaries of Map(t , ,  H) .  Thus, these states are not stationary 
and by the uncertainty principle are expected to disperse to the other parts 
of the configuration space. This dispersion is observed as various particle 
reactions, which may change particle number and also the topological 
quantum numbers associated with a single particld. By multiplicative super- 
position the stationary states must correspond to linear superpositions of 
bare n-particle states. 

One can construct from an n-particle bare state a stationary state by 
continuing this state to the other topologically different sectors of  the 
configuration space. The continuation of the bare n-particle state to a 
stationary state must be one-valued. This requirement probably poses con- 
straints on the spectrum of allowed bare states and might well lead to 
quantization conditions. 

4. Definition of S-matrix. Bare n-particle states resemble the incoming 
states of the ordinary field theories; they have sharp particle number and 
they are not global solutions of the field equations. The stationary states in 
turn resemble the outgoing states, since they are stationary solutions of the 
field equations and have no sharp particle number. Thus, it is natural to 
define the S-matrix as a matrix transforming the bare and stationary states 
into each other. 

In the following subsections we shall: 
1. Consider the problem of comparing superfields associated with 

topologies t I and t2 in the singular limit tl ~ t12 ~- t2. 
2. Formulate the continuity conditions making it possible to continue 

a given bare state functional to a stationary state functional. 
3. Derive a formal solution to the continuity conditions in terms of 

certain overlap integrals over Map(q2, H).  As a result, one obtains explicit 
expressions for couplings (say, the electromagnetic coupling!) as overlap 
integrals over Map(q2, H) .  

4. Derive from the one-valuedness requirement of the stationary state 
functionals a set of conditions analogous to the conditions defining the 
duality concept familiar from the string models (Jacob, 1974; Chew and 
Rosenzweig, 1978). 

5. Derive a general expression for the S-matrix and discuss the problem 
of the practical evaluation of S-matrix elements. 
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6.2. Description of the Limiting Procedure 

The continuity conditions state that the limiting values of  the superfields 
associated with two manifold topologies t~ and t2 in the limit are equal in 
the limit of  the singular manifold topology: tl ~ tl2 ~- t2. 

To relate the superfields defined in different parts of  the configuration 
space, we must be able to define the limiting procedure 

Map(ti, H )  ~ Map(t,2, H) ,  i = 1, 2 

in a unique manner. This limiting procedure defines a representation for 
the geometry of the space Map(t12, H )  and thus the calculation of various 
overlap integrals encountered in the construction of the S-matrix can be 
performed using the corresponding G-invariant integration measure. 

Of  course, the limits ti ~ tj2 give rise to two different representations 
of  the geometry of  Map(q2, H) but these representations must correspond 
to two different choices of  coordinates for t12 (different choices of  scalar 
function basis). 

The fundamental  topology changes correspond either to a change in 
the internal topology of a connected manifold or to a decay of a connected 
manifold. Thus, we shall restrict our attention to these cases from now on. 

A convenient way to describe the limiting procedure is via the following 
trick. Let d be a singular diffeomorphism, which maps X with initial 
topology to a singular manifold with intermediate topology q2. For instance, 
d could map: 

1. A sphere to a manifold that is intermediate between a sphere and 
two disjoint spheres; in this case d maps some 2-surface of X to a single 
point. 

2. A surface S 1 x S 2 to a manifold with topology intermediate between 
a torus and S3-topology; in this case d could map the 2-surface p x S 2 to 
a point for some point P of  S ~. 

3. A manifold with one boundary component  to a singular manifold 
intermediate between the original manifold and a manifold with two boun- 
dary components.  

I f  {sin} is the scalar function basis associated with the initial (or final) 
topology, the scalar function basis associated with the intermediate topology 
is simply the basis {sin o d}. The surfaces obtained by exponentiating these 
Lie-algebra generators indeed describe singular surfaces. The singularity 
surface associated with the map s is always mapped  to a single point in H. 

Since the complexified scalar function basis plays a central role in the 
definition of  the metric and related quantities, this correspondence makes 
it possible to define the limiting procedure for the metric, the vielbein, and 
connections. 
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In order to compare superfields associated with t 1 and t2, we must be 
able to relate the spinors and theta parameters associated with different 
manifold topologies and with the intermediate manifold topology to each 
other. 

The Hilbert space of spinors is "universal" and the theta parameters 
are in one-to-one correspondence with the annihilation and creation 
operators defining this space. Thus, the integration measure associated with 
the theta parameters is also universal. All that is needed is to find a natural 
representation of the initial and final gamma matrices in the universal 
algebra of  annihilation and creation operators. 

What is involved in this limiting procedure is best described by a 
concrete example. Let us consider the decay of a connected 3-manifold into 
two components X~ and )(2 via the intermediate singular manifold with 
one point of  X1 and X2 identified. 

The scalar function basis {sin} associated with X goes to the scalar 
function basis {sin o d} (d is a map contracting the 2-surface of X to a 
point) associated with the intermediate topology. The restriction 

sm~ dlx ,, i = 1, 2 

of the scalar function basis defines a natural scalar function basis for Xi. 
The direct sum of these bases gives an alternative scalar function basis for 
X~2. Thus, one can evaluate the limits of the geometric quantities. 

One must imbed the bare gamma matrices associated with X~ and X2 
to suitably chosen disjoint subalgebras of  the universal algebra and require 
that the imbeddings together span the whole algebra. For instance, one can 
associate the complexified gamma matrices associated with X1/X2 with the 
operators a,  and a~ with even/odd index n. 

Since the scalar functions associated with the initial topology are sums 
of their restrictions to X1 and 322, the gamma matrices associated with X 
are sums of the gamma matrices associated with X1 and 322. Hence, the 
bare gamma matrices associated with the initial topology correspond to the 
operators 

(a , ,+a, ,+l) /~;  (a++a++l)/~/2 

Thus, we have obtained what is needed to compare the superfields associated 
with the initial and final topologies, and can calculate the typical overlap 
integrals of  three superfields defined in X~, X2, and X12. 

Notice that the exponential factors exp(i0 + 0-) associated with the final 
states must be replaced with the factors exp(iO+PO-), where P projects to 
the subspace of even/odd thetas. As a consequence, the exponential factors 
combine to give the conjugate of the corresponding factor associated with 
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the inital state and one can evaluate overlap integrals using the same rules 
as used in the calculation of  ordinary scalar products. 

6.3. Formal Solution of  the Continuity Conditions 

In order to continue a given bare state functional defined in Map(t, H)  
to a stationary state functional, one can use the continuity requirement of 
the state functional in the sets Map(ti, H) .  In this subsection I shall formulate 
the continuity conditions and derive a formal solution of  the conditions. 

Let V~(t) denote a basis of bare state functionals defined in Map(ti, H) ,  
i= 1,2. The phase symmetry of  the super-d'Aiembertian implies the 
existence of a scalar product, which we assume to be positive definite in 
the subspace of  physical states. Thus, we can assume that bare states form 
a complete, orthonormalized set. 

With these preliminaries we are ready to derive a formal solution to 
the continuity conditions. The continuity conditions state that for two 
"neighboring" topologies ti, i = 1, 2, the orthonormalized state functionals 
belonging to V(t l )  [ V(t2)] are expressible as a linear combination of  the 
corresponding state functionals belonging to V(t2) [ V(tl)] ,  

Sm(ti) =}~ Sn(tj)Gn'~(tj, ti), i r  (85) 
n 

These conditions can be expressed in a more concise form using matrix 
notation, 

S(ti) = S(tj) o G(tj, ti), i r  (86) 

The components of the matrices G(t l ,  t2) and G(t2,  t l )  are the unknown 
quantities we wish to solve. 

The matrices G(ti, tj) and G(tj, ti) are inverse matrices in the sense 
that the following equations hold: 

G( ti, tj) o G( tj, ti) = Id(  ti) (87) 

In order to solve the components of the unknown matrices from the con- 
tinuity conditions (85), we multiply them with a given state functional 
Sm(ti) of V(ti) and perform the integral over the theta parameters and over 
Map(t0, H)  (overlap integral over singular manifolds). Define the matrices 
H(ti ,  tj) ( i , j  = 1, 2) by the following formula: 

Hm"(ti, tj) = (Sm( ti), S"( tj)) 

= f Sm(t i )S"( t j )DV(to)  (88) 

where the scalar product is defined by the integration measure, which is 
the product of  the integration measure of Map(t,~, H)  and the measure 
associated with the Grassmann algebra. 
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Using these definitions, one can cast the continuity conditions into the 
following form: 

H (  tj, ti) = H (  ti, tk ) o G(  tk, ti) (89) 

Using equation (87), it is easy to verify that only two of these equations 
are independent of each other. For example, the equations corresponding 
to index pairs ( i , j )  = (1, 1) and (2, 2) imply the remaining equations. 

If  the matrix H(t i ,  tj) is invertible in the sense that there exists a matrix 
I(t j ,  ti) with the property 

l ( ti, tj) o H (  tj, ti) = Id(  ti) (90) 

then the unknown matrix G(ti ,  tj) can be solved from (6.5) and written in 
the following form: 

G( tj, ti) = I (  tj, tk) o H (  tk, ti) (91) 

Thus, we have expressed the matrices G(ti ,  tj) in terms of overlap integrals 
of the bare state functionals over the set of singular manifolds, which are 
in principle calculable. 

The assumption about the invertibility of the matrix H(t i ,  ti) is clearly 
a crucial step in the formal solution of the continuity conditions. 

6.3. One-Valuedness Requirement 

The continuation of the bare n-particle state functional Sin(t) [restricted 
to Map( t, H)]  to a stationary state functional S~(t) (having no sharp particle 
number) can be performed by applying the formal solution of the continuity 
conditions. Thus, the stationary state functional can be written as a sum of 
bare state functionals 

S'~( t) = srn( t)-F E S"(  t j )G"m( tj, t) (92) 
j,n 

Here the matrices G(t ,  tj) can be decomposed into products of the matrices 
G(t ,  tj) associated with the continuations between "neighboring" 3-mani- 
fold topologies (there exist 3-surfaces having topology intermediate between 
two 3-manifold topologies): 

G(tj ,  t) = G(tj ,  t l)  o G ( t l ,  t2) . . . .  G(tm,  t) (93) 

In general it is kinematically possible (the intermediate states in the continu- 
ation are "on-mass-shell states") to perform the continuation t ~  tj via 
several paths and each of these paths must lead to the same final result. 
The uniqueness of the final result is guaranteed if the product of the matrices 
G(tj, t) associated with a given path of continuation depends only on the 
initial and final topologies. 
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Equivalently, the product of matrices G associated with a closed 
kinematically allowed path of continuations t --> t m  --> -~ �9 �9 �9 t l  -> t is always 
a unit matrix; 

G ( t ,  t l )  o G ( t l ,  t2) . . . .  G ( t m ,  t )  = I d ( t )  (94) 

One might expect that the continuations are strongly restricted by the 
kinematical constraints, since the intermediate states of the continuation 
must be solutions of the field equations: thus, all particles in intermediate 
states must be on-mass-shell particles. The general solution of the super- 
d'Alembertian does not, however, fix the particles on-mass-shell. Perhaps 
the requirement of one-valuedness plays an important role in quantization. 

One can represent the various continuations diagrammatically. The 
diagrammatic rules are the following; 

1. Associate with each connected 3-manifold a line with labels describ- 
ing the topology of the 3-manifold and various quantum numbers of the 
corresponding bare state functionals. 

2. The particle-number-changing transitions have as the basic vertex 
the three-particle vertex, and the vertex is described by the matrix G. 

3. The vertices changing 3-manifold topology but preserving con- 
nectedness are described by a two-particle vertex described by the matrix G. 

In this manner one can associate a diagrammatic representation with 
each continuation via intermediate topologies. 

One-valuedness conditions state that all diagrams having the same 
initial and final states are equivalent, so that any reaction can be described 
by a unique minimal diagram. 

The diagrammatic representation for the 2 --> 2 reaction reveals that the 
one-valuedness conditions are analogous to the duality conditions familiar 
from the dual string models (Jacob, 1974; Chew and Rosenzweig, 1978), 
stating that the sum over the resonances in the s-channel is equivalent to 
the sum over the exchanges in the t-channel. 

It should be emphasized, however, that the one-valuedness conditions 
imply restrictions on the transition amplitudes only when both s- and 
t-channel reactions can proceed on-shell. The assumption about crossing 
symmetry for 2 ~ 2-channel reactions might imply the duality conditions in 
their full strength. 

6.4. Construction of S-Matrix 

Since the relationship between bare and stationary states resembles the 
relationship between incoming and outgoing states in field theories, it seems 
natural to define the S-matrix as the matrix relating these two sets of  states 
to each other. 
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Whenever possible we shall use the short-hand notations Im) and Ires) 
for the bare and stationary states, respectively. The bare states are assumed 
to be orthonormalized with respect to the scalar product, whose existence 
follows from the phase symmetry of the action. The scalar product is 
assumed to be positive definite. We have 

(m, n) = 8(m, n) (95) 

The stationary states are not expected to be orthogonal as such and the 
scalar products between stationary states can be represented in the form of 
a matrix 

(ms, ns) = (Id + G +  G+ + G+ G), , ,  (96a) 

Here we have used the following notations: 

ID = ~ Id( t) (96b) 
t 

G = ~ G(ti, tj) (96c) 
ti, tj 

G += ~ Gt(ti,  tj) (963) 
ti, q 

Since the matrix formed by the scalar products is Hermitian, it is possible 
to perform a unitary transformation U making this matrix diagonal. It is 
clear that the diagonalizing transformation mixes stationary states corre- 
sponding to different topologies. We assume, however, that the mixing is 
so small that there exist a natural correspondence between the bare states 
[m) and the new diagonalized states Ir~s). The diagonalizing is necessary 
in order to define positive-definite transition probabilities. 

In the orthogonalized basis the matrix formed by the scalar products 
has the form 

(rfi,, ff~) = Z ( m )  6m,, (97) 

Here the constants Z ( m )  are analogous to the wave function renormalization 
constants of the ordinary quantum field theories. 

With these preliminaries we are ready to define the S-matrix and its 
dual via the following formula: 

S = (n, r~s)/[Z(m)] '/2 (98) 

The unitarity of the S-matrix and thus the existence of positive-definite 
transition probabilities follow from the assumption that the scalar products 
between the bare states are positive definite. 
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In the orthogonalized basis the representation of the S-matrix in terms 
of the matrix G is given by the formula 

S,,n = anm/ [Z (m)]  1/2, A = (Id + G) U (99) 

It is rather easy to demonstrate that the nontriviality of the matrix U is 
necessary in order to obtain a physically acceptable S-matrix. Assuming 
that the U-matrix is the identity matrix, the S-matrix elements between 
state functionals S'~(t) and Sn(t)  are diagonal. Thus, the S-matrix would 
be nontriviat only for topology-changing transitions. For instance, for the 
scattering of two charged particles the S-matrix would be trivial. 

The mixing of different 3-topologies caused by the matrix U is necessary 
in order to explain Cabibbo mixing, if different fermion families correspond 
to different boundary component topologies. Cabibbo mixing can be iden- 
tified as a mixing of different boundary topologies caused by the diagonaliz- 
ing matrix U. 

6.5. Evaluation of the Couplings 

The evaluation of the various coupling constants is not attempted in 
this work. Here I consider only the general features of the problem. 

A natural definition for the coupling constants is as overlap integrals 
of the superfield basis associated with initial and final topologies. The 
integral is taken over the space Map(X12, H),  where X12 is a singular 
3-manifold intermediate between the initial and final topologies. 

It is clear that the calculation reduces to that of calculating two-particle 
(mixing of different one-particle topologies) and three-particle vertices. It 
is equally clear that the direct calculation of the coupling constants is out 
of the question. The formal expressions derived can be used to give an 
insight into the general structure of the S-matrix only. Here, however, the 
group invariance saves the situation. The tensor product of the initial state 
and the conjugate of the final states formed using the coupling constant as 
weights of various states must be a G-singlet. 

The symmetry group is indeed enormous and thus the coupling con- 
stants might be calculable, apart from a finite number of parameters, by 
purely group-theoretic considerations; one constructs G-singlets from the 
tensor product of given representations of G. Probably the construction of 
the vertex operators in the string model (Goddard-Olive, 1983) closely 
corresponds to this. The vertex operators should be interpretable as 
coefficients defining the singlet formed as the tensor product of three 
representations of the Kac-Moody algebra. 

Even the arbitrary parameters appearing in the group-theoretically 
evaluated overlap integrals might be evaluated using the fact that the state 
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functional is single-valued. Thus, the hopes of solving the theory are rather 
high. 

In the pointlike limit the overlap integrals of free particle superfields 
over the configuration space and over theta parameters should describe 
various three-particle vertices. Thus we are in the situation where we can 
evaluate all couplings apart from an overall scaling factor at the pointlike 
limit once we have an orthonormalized basis of elementary particle solutions 
of the super-d'Alembertian. 

It is rather easy to see that the expected selection rule and general 
coupling structure hold for the couplings of spin-one bosons to fermions. 
This is due to the appearance of the charge matrices in the definition of 
the bosonic superfields. The current obtained after the integration over the 
theta parameters and CP2 degrees of freedom has the structure of  an 
interaction term of an M 4 field theory. 

The general properties of the gravitational interaction follow from the 
general form of the solution of the super-d'Alembertian in a very beautiful 
manner. The graviton contains two pairs of theta parameters and this implies 
that the two-fermion-graviton vertex is vanishing in the lowest order of the 
superfield expansion of each particle. The second term in the expansion of 
the particle is of the form 

OTOT=- XT (100) 

Only the M 4 part of X contributes to the gravitational coupling. Thus, the 
gravitational coupling is proportional to the 4-momentum of the particle. 
Furthermore, the weakness of the coupling is also easy to understand. The 
expansion for the solution is of the form considered only because we have 
taken as the length unit the Planck mass. In conventional units the term 
would be proportional to a parameter R equal to the CPz radius. 

How can one then understand the strength of the gluonic coupling? 
The point is that only the CP2 part of the operator ~" is involved in the 
calculation of the gluonic coupling. Since the gradient of the colored states 
is of the order of magnitude given by the inverse of the Planck length, 
gluonic coupling is indeed of the required order of magnitude, in complete 
accordance with the concept of the color gravitational analogy. 

7. SUMMARY 

In this paper a new technical realization of the quantization program 
described in the introduction has been attempted. 

1. Instead of working in the space Map(X,H)/Diff, the space 
Map(X, H)  is chosen as the basic geometric object. The general parametriz- 
ation invariance is realized by assuming that superfields are Diff-invariant 
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fields in the space Map(X, H) .  The space of maps is endowed with an 
almost unique Diff-invariant and G[local M 4xSU(3)!]- invar iant  
geometry. 4 

The metric of Map(X, H)  turns out to be the K/ihler metric and the 
construction of the geometry also leads to an understanding of  the central 
extensions of the G Lie algebra. The central extensions correspond to the 
addition of a suitable multiple of the K~ihler potential to the covariant 
derivative, and thus one obtains a purely geometric interpretation for the 
so-called "second quantization." 

The centrally extended Lie algebra has the same general form as the 
Kac-Moody  algebra appearing in the string model. The induced K~ihler 
form defines a magnetic structure in any 3-surface. In dimension 3 this 
structure is exceptionally rich topologically. 

2. The definition of  the superfield concept is accomplished by introduc- 
ing the spinor Grassmann algebra as an algebra generated by the "theta 
parameters" in one-to-one correspondence with a spinor basis of 
Map(X, H) .  The superfield is defined as a field having values in this 
Grassmann algebra. The super-d'Alembertian is defined as an operator 
analogous to the ordinary d'Alembertian. 

The formalism leads to surprisingly strong results. 
(a) When the gamma matrices appearing in the super-d'Alembertian 

are replaced by suitable modified gamma matrices the field equations reduce 
[by the constant-curvature property of Map(X, H) ]  to a simple algebraic 
equation satisfied by the field generating the solution of the super-d'Alem- 
bertian. 

(b) As far as the properties of the scalar product are concerned, the 
theory is found to be finite. This results from a cancellation of potential 
divergences and is caused by the specific properties of  the solution ansatz. 
The calculation of the scalar product leads to a formalism similar to that 
used to calculate transition amplitudes in free field theory. 

(c) The requirement of a nontrivial scalar product implies matter- 
antimatter asymmetry at the level of the field equations, separate conserva- 
tion of the baryon and lepton numbers at the level of the field equations, 
and spontaneous breaking of  this symmetry. At the pointlike like limit N = 1 
supersymmetry is implied by the same requirement. 

(d) Since the isometries of Map(X, H)  form the local gauge group 
M4• SU(3),  the classification of the solution spectrum reduces to a purely 
group-theoretic problem. Classify the Diff-invariant, unitary representations 
of  the various central extensions of the Kac-Moody  algebra associated with 

nit is probable that the local M 4 symmetry in fact extends to local Poincar6 symmetry. This 
is in accordance with the idea that local Poincar6 group is the gauge group of gravitational 
interactions. 
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G. The resulting formalism resembles closely that encountered in the quan- 
tization of string models. 

(e) The pointlike limit of the theory has N = 1 supersymmetry. The 
concept of R-invariance related to N = 1 supersymmetry turns out to be 
very useful in the classification of the physical states. 

The concept of central extension is found to give a nice realization for 
the idea that quarks correspond to pseudo triplet partial waves of CP2 with 
anomalous hypercharge proportional to the electromagnetic charge. 
Different chiralities of H-spinors are found to correspond naturally to 
quarks and leptons. 

If one defines elementary particles roughly as generators of the algebra 
to which physical states belong as a subset, one can identify lowest gener- 
ation fermions (recall the topological explanation of the family replication 
phenomenon),  electroweak gauge bosons, gluons, and gravitons and their 
super partners from the spectrum. A great number of other particles are 
predicted to exist. 

(f) In the construction of the S-matrix the concepts of bare and 
stationary states play central roles. Bare states are superfields restricted to 
the subset of the configuration space corresponding to a given 3-manifold 
topology. Stationary states are obtained by continuing the bare state func- 
tionals to state functionals defined in the whole configuration space. 

The continuity conditions making it possible to continue a bare state 
functional to whole configuration space can be solved formally and the 
conditions guaranteeing the uniqueness of  the continuation process turn 
out to be analogous to the conditions defining the duality concept in the 
context of dual models. 

The S-matrix can be defined as the matrix relating the bare and the 
stationary states to each other. The S-matrix is unitary provided the scalar 
product associated with the super-d'Alembert equation is positive definite. 
The calculation of the S-matrix elements reduces to the solution of the 
continuity conditions. Since the basis of the stationary states is not normal- 
ized to unity, quantities analogous to the wave function renormalization 
constants appear in the expressions for the transition probabilities. 

The local M4• SU(3) invariance combined with the one-valuedness 
conditions is expected to reduce the practical evaluation of the S-matrix 
to a group-theoretic problem. It is found that the general form of the solution 
ansatz makes it possible to understand the general features of the interaction 
vertices: for example, the weakness of the gravitational interaction. 

Summarizing, the use of the space Map(X, H)  endowed with G- and 
diffeoinvariant geometry has made possible the formulation of a calculable 
theory. In particular, the concept of central extension has turned out to be 
especially useful. In fact, there are strong reasons to believe that the 
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characterization of a many-particle system through the topological proper- 
ties of the induced K/ihler field might provide a new powerful tool for the 
description and understanding of the behavior of  many-particle systems. 
Even an explanation for the dimensionality of space has emerged; in 
dimension 3 central extension turns out to be exceptionally rich topologi- 
cally. 

APPENDIX: MODIFIED GAMMA MATRICES AND SPINOR 
C O H O M O L O G Y  

The Kfihler form of CP2 is covariantly constant and its square gives the 
negative of  the metric tensor. Thus the modified gamma matrices defined by 

k (hk+iJf)F,/2 (A1) F •  = 

are covariantly constant quantities and define complexification of the gamma 
matrix algebra of CP2. 

The modified gamma matrices obey an algebra isomorphic to that 
obeyed by fermionic creation and annihilation operators, 

{Fk+, Ct_} = hk'Id; {F~, F~} = 0 (A2) 

as is seen by multiplying the gamma matrices with factors i 1/2. 
The definition of the modified Dirac operator is obvious; one needs 

only to replace the gamma matrices appearing in these operators with the 
annihilation-type gamma matrices. The square of the modified Dirac 
operator of CP2 vanishes identically. 

One can extend the definition of the modified gamma matrices to the 
case of the space Map(X, H)  because of its K~ihler structure. Since the 
modified gamma matrices and their Hermitian conjugates obey the algebra 
of fermionic creation and annihilation operators, one can require in the 
infinite-dimensional case that spinors are obtained from some "vacuum 
spinor" by applying a finite number of  creation operator-like-modified 
gamma matrices. 

In the infinite-dimensional case the appearance of only annihilation- 
type gamma matrices in the modified Dirac operator has an important 
consequence; only a finite number of them give a nonvanishing result when 
applied to a configuration space spinor. Concerning the calculability of the 
theory, the modification of  the Dirac operator appearing in the field 
equations thus seems highly desirable. 

The modified Dirac operator operator of CP2, denote it by d• defines 
"spinor cohomology" in H. One can define closed (du = 0), exact (u = dr), 
and cohomologically nontrivial (closed but nonexact) spinors. Furthermore, 
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one can define the cohomology group as the linear space of the cohomologi- 
cally nontrivial spinors. 

In order to understand the properties of the spinor cohomology it is 
advantageous to use complex coordinates (~t, ~:2, ~1, ~2) for CP2 (Pitk~inen, 
1981, 1983, 1985, 1986; Eguchi et al., 1980). In these coordinates the operator 
d+ has a surprisingly simple form, 

d+ = F ~D~ (A3) 

Thus, d+ is simply proportional to the half of the Dirac operator that acts 
on the variables ~k. 

The square of d• vanishes, since the curvature form of the spinor 
connection satisfied has no components of type Fkt or Ffr. 

The vacuum spinor annihilated by the annihilation operator-type 
gamma matrices is a closed spinor. In the case of C P  2 this spinor has 
quantum numbers of a right-handed neutrino or a right-handed electron, 
depending on which gammas are interpreted as annihilation-type gamma 
matrices. The right-handed neutrino is a closed spinor because of its 
covariant constancy. 

The spinors satisfying the condition 

Dr, u = 0 (A4) 

are closed. These conditions can be regarded as a generalization of the 
analyticity conditions obtained by replacing ordinary derivatives with 
covariant derivatives. The integrability conditions associated with these 
equations are satisfied identically. The existence of analytic noncovariantly 
constant spinors is, however, improbable (only the constant analytic func- 
tion in the complex plane is everywhere regular). 

The concept of spinor cohomology also generalizes to the case of 
Map(X, H) .  Now the spinor annihilated by all modified gamma matrices 
(but not M 4 gamma matrices) is closed in the spinor cohomology and 
corresponds to the "vacuum spinor." 
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